n阶实矩阵A若AAT=E,则A称为正交矩阵,设A,B都是n阶正交矩阵,若|A|+||B|=0,则|A+B|=
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 14:03:27
n阶实矩阵A若AAT=E,则A称为正交矩阵,设A,B都是n阶正交矩阵,若|A|+||B|=0,则|A+B|=
因为A,B为正交矩阵
所以 A^TA=AA^T=E,B^TB=BB^T=E.
且 |A|^2=|B|^2=1
再由 |A|+|B|=0
得 |A|^2+|B|^2+2|A||B|=0
所以 |A||B|=-1.
所以 -|A+B|
= |A||A+B||B|
= |A^T||A+B||B^T|
= |A^T(A+B)B^T|
= |A^TAB^T+A^TBB^T|
= |B^T+A^T|
= |(B+A)^T|
= |A+B|
所以有 2|A+B| = 0
所以 |A+B| = 0.
这个好麻烦
所以 A^TA=AA^T=E,B^TB=BB^T=E.
且 |A|^2=|B|^2=1
再由 |A|+|B|=0
得 |A|^2+|B|^2+2|A||B|=0
所以 |A||B|=-1.
所以 -|A+B|
= |A||A+B||B|
= |A^T||A+B||B^T|
= |A^T(A+B)B^T|
= |A^TAB^T+A^TBB^T|
= |B^T+A^T|
= |(B+A)^T|
= |A+B|
所以有 2|A+B| = 0
所以 |A+B| = 0.
这个好麻烦
n阶实矩阵A若AAT=E,则A称为正交矩阵,设A,B都是n阶正交矩阵,若|A|+||B|=0,则|A+B|=
线性代数题:A,B都是n阶正交矩阵,若|A|+|B|=0,则|A+B|=?
A,B均为n阶矩阵,B B为正交矩阵,则|A|^2=
设A,B都是n阶正交矩阵,且|AB|
设A与B都是N阶正交矩阵试证AB也是正交矩阵
设A,B都是n阶的正交矩阵,证明A的伴随矩阵A*也是正交矩阵
如果实方阵a满足aat=ata=i 则称a为正交矩阵 设a b为同阶正交矩阵 证明:at是正交矩阵;a
设A、B都是n阶正交矩阵,并且已知detA+detB=0,证明:det(A+B)=0
矩阵证明题1、证明:若A与B都是n阶正交矩阵,则AB也是正交矩阵.2、证明:对任意的n阶矩阵A,A+A^T为对称矩阵,A
设A,B是n阶正定矩阵,则AB是:A.实对称矩阵.B.正定矩阵.C.可逆矩阵.D.正交矩阵
若n阶矩阵A,B都正定,则A,B一定是() a.对称矩阵b.正交矩阵c.正定矩阵d.可逆矩阵
设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.