1.已知数列{an}的前四项和等于4,设前n项和为Sn,且n≥2时,an=1/2(根号Sn+根号Sn-1),求S10
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 19:51:32
1.已知数列{an}的前四项和等于4,设前n项和为Sn,且n≥2时,an=1/2(根号Sn+根号Sn-1),求S10
2.在△ABC中,角A.B.C所对的边分别是a.b.c,tanA=1/2,cosB=3倍根号10/10,
①求tanC的值;②若△ABC的最长边是1,求最短边的长.
2.在△ABC中,角A.B.C所对的边分别是a.b.c,tanA=1/2,cosB=3倍根号10/10,
①求tanC的值;②若△ABC的最长边是1,求最短边的长.
1.
a[n] = S[n]-S[n-1] = 1/2 (√S[n]+√S[n-1])
==> √S[n] - √S[n-1] = 1/2
==> √S[10] - √S[4] = 1/2 * 6 = 3,√S[4]=√4=2
==> √S[10] = 5,
==> S[10] = 25
2.
tanB = sinB/cosB = 1/3
==> tan(A+B) = (1/2+1/3)/(1-1/2*1/3) = 1
==> tanC = -tan(A+B) = -1
sinA=√5/5,sinB=√10/10,sinC=√2/2
==> sinC>sinA>sinB ==> c>a>b
==> b/c = sinB/sinC = √5/5
==> b=√5/5
a[n] = S[n]-S[n-1] = 1/2 (√S[n]+√S[n-1])
==> √S[n] - √S[n-1] = 1/2
==> √S[10] - √S[4] = 1/2 * 6 = 3,√S[4]=√4=2
==> √S[10] = 5,
==> S[10] = 25
2.
tanB = sinB/cosB = 1/3
==> tan(A+B) = (1/2+1/3)/(1-1/2*1/3) = 1
==> tanC = -tan(A+B) = -1
sinA=√5/5,sinB=√10/10,sinC=√2/2
==> sinC>sinA>sinB ==> c>a>b
==> b/c = sinB/sinC = √5/5
==> b=√5/5
1.已知数列{an}的前四项和等于4,设前n项和为Sn,且n≥2时,an=1/2(根号Sn+根号Sn-1),求S10
已知数列{an}的前n项和为Sn,a1=1,当n≥2时,an=(根号下Sn+根号下Sn-1)/2
已知正数数列{an}的前n项和为Sn,且对于任意正整数n满足2根号Sn=an+1 求an通项
已知数列{an}的各项都为正数,a1=1,前n项和Sn满足Sn-Sn-1=根号Sn+根号Sn-1(n≥2),求数列{an
设数列{an}的前n项和为sn,若an=n+1/2^n,(1)求s10(1)求sn
正数数列an的前n项和为Sn,且2根号Sn=an+1
设数列{an}的前n项和为Sn,且Sn=2^n-1.
设数列{an}的前n项和为Sn,已知首项a1=3,且Sn+1+Sn=2an+1,试求此数列的通项公式an及前n项和Sn
已知数列{An}的前n项和为Sn,且S4等于4,且n大于等于2时,满足An等于(根号Sn+根号S(n+1))/2
已知Sn是数列{An}的前n项和,A1=2,根号Sn—根号S(n-1)=根号2,求Sn的表达式
已知数列an的首项a1=5,前n项和为Sn,且S(n+1)=2Sn+n+5(n∈N*),求数列{an}的前n项和Sn,设
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an