arctanx+arccotx=π/2,(-∞<x<∞) 怎么证明恒等式成立?
arctanx+arccotx=π/2,(-∞<x<∞) 怎么证明恒等式成立?
证明恒等式arctanx+arccotx=π/2
证明恒等式arctanx+arccotx=π/2 , f(x) = arctanx+arccotx, 则有f'(x) =
证明恒等式:arctanx+arccotx=ㅠ/2 x属于负无穷大到正无穷大
证明恒等式:arctanx+arctan1/x=π/2(x>0)
证明:arctanx+arccotx=兀/2
证明恒等式arctanx—1/2arcos(2x/1+x^2)=π/4 (x≥1)
证明:arctanx+arccotx=2分之派.应该是用拉格朗日中值定理做的,
求证恒等式:arctanX+arctan1/X=派/2
arctanx+arbsin(2x/1+x2)=兀怎么证明?
求微分 ①y=1+lnx/1-lnx ②y=1/2ln[(1+x)/(1-x)]-arctanx 证明恒等式:arcsi
证明当x>0,arctanx+arctan1/x=π/2