作业帮 > 数学 > 作业

如图,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 19:40:20
如图,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,-2/3)
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC边以1cm/s的速度向点C移动.
①移动开始后第t秒时,设S=PQ2(cm2),试写出S与t之间的函数关系式,并写出t的取值范围
②当S取5/4时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标,如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标
如图,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax
(1)据题意知:A(0,-2),B(2,-2)
∵A点在抛物线上,
∴c=-2
∵12a+5c=0,
∴a= 56
由AB=2知抛物线的对称轴为:x=1
即:- b2a=1,b=- 53
∴抛物线的解析式为:y= 56x2- 53x-2.
(2)①由图象知:PB=2-2t,BQ=t,
∴S=PQ2=PB2+BQ2=(2-2t)2+t2
即S=5t2-8t+4(0≤t≤1).
②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,
∵S=5t2-8t+4(0≤t≤1),
∴S=5(t -45)2+ 45(0≤t≤1),
∴当t= 45时,S取得最小值 45.
这时PB=2 -85=0.4,BQ=0.8,P(1.6,-2),Q(2,-1.2).
分情况讨论:
(A)假设R在BQ的右边,这时QR=∥PB,则:
R的横坐标为2.4,R的纵坐标为-1.2,即(2.4,-1.2),
代入y= 56x2- 53x-2,左右两边相等,
∴这时存在R(2.4,-1.2)满足题意.
(B)假设R在BQ的左边,这时PR=∥QB,
则:R的横坐标为1.6,纵坐标为-1.2,即(1.6,-1.2)
代入y= 56x2- 53x-2,左右两边不相等,R不在抛物线上.
(C)假设R在PB的下方,这时PR=∥QB,
则:R(1.6,-2.4)代入y= 56x2- 53x-2,左右不相等,R不在抛物线上.
综上所述,存点一点R(2.4,-1.2)满足题意.
再问: 答案不对题目
再答: 对不起,答案是网上查的,但是题目的思想方法应该是这样,你认真想一想会做出来的。
如图,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax 如图在平面直角坐标系xoy中,正方形OABC的边长为2厘米,点A、C分别在y轴的负半轴和x轴的正半轴上.抛物线y=ax2 如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y= 如图,在直角坐标系xOy中,正方形OABC的边长为2cm,点A,C分别在x轴,y轴的正半轴上.抛物线y=-x² 在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A,C分别在y轴的负半轴和X轴正半轴上,抛物线经过点A,B和D (2011•兰州)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半 如图所示,在平面直角坐标系x0y中,正方形OABC的边长为2cm,点A C分别在y轴的负半轴和x轴的正半轴上,抛物线经 如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A,C分别在x轴,y轴的正半轴上,二次函数 y= 如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=- 如图,在直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在x轴、y轴的正半轴上.第二题第二小问? 如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A,C分别在x轴,y轴的正半轴,二次函数y=-3/2x2+ 如图所示,在平面直角坐标系xoy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴