已知抛物线C:x^2+4x+7/2,过C上一点M,且与M处的切线垂直的直线成为C在点M的法线.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 14:53:04
已知抛物线C:x^2+4x+7/2,过C上一点M,且与M处的切线垂直的直线成为C在点M的法线.
(1)若C在点M的法线的斜率为-1/2,求点M的坐标(x0,y0);
(2)设 P(-2,a)为C对称轴上的一点,在C上是否存在点,使得C在该点的法线通过点P?若有,求出这些点,以及C在这些点的法线方程;若没有,请说明理由.
p.s.第一问我会做:M(-1,1/2),问第二问怎么做,
(1)若C在点M的法线的斜率为-1/2,求点M的坐标(x0,y0);
(2)设 P(-2,a)为C对称轴上的一点,在C上是否存在点,使得C在该点的法线通过点P?若有,求出这些点,以及C在这些点的法线方程;若没有,请说明理由.
p.s.第一问我会做:M(-1,1/2),问第二问怎么做,
抛物线y=x²+4x+7/2,
整理y=(x+2)²-1/2,最低点(-2,-1/2),
设C上有点Q(m,n),该点法线y=kx+b,
该点处切线斜率为y′=2x+4=2m+4,
那么法线斜率为k=-1/(2m+4),
带Q入法线方程,n=km+b,
带P入法线方程,a=-2k+b,
则n-a=km+2k=k(m+2),
简化n-a=-1/2,其中m≠-2(否则切线斜率为0,法线斜率不存在),
即n=a-1/2,
带入C中求得m=-2+√a或者-2-√a,其中a≥0,
但m≠-2,故a≠0,即a>0,
当m=-2+√a,法线为2√ay+x=-2+2a√a;
当m=-2-√a,法线为2√ay-x=2+2a√a;
综上,当a>0时,
C上存在A点(-2+√a,a-1/2)处的法线2√ay+x=-2+2a√a经过P;
C上存在A点(-2-√a,a-1/2)处的法线2√ay-x=2+2a√a经过P;
当a≤0时,则没有.
整理y=(x+2)²-1/2,最低点(-2,-1/2),
设C上有点Q(m,n),该点法线y=kx+b,
该点处切线斜率为y′=2x+4=2m+4,
那么法线斜率为k=-1/(2m+4),
带Q入法线方程,n=km+b,
带P入法线方程,a=-2k+b,
则n-a=km+2k=k(m+2),
简化n-a=-1/2,其中m≠-2(否则切线斜率为0,法线斜率不存在),
即n=a-1/2,
带入C中求得m=-2+√a或者-2-√a,其中a≥0,
但m≠-2,故a≠0,即a>0,
当m=-2+√a,法线为2√ay+x=-2+2a√a;
当m=-2-√a,法线为2√ay-x=2+2a√a;
综上,当a>0时,
C上存在A点(-2+√a,a-1/2)处的法线2√ay+x=-2+2a√a经过P;
C上存在A点(-2-√a,a-1/2)处的法线2√ay-x=2+2a√a经过P;
当a≤0时,则没有.
已知抛物线C:x^2+4x+7/2,过C上一点M,且与M处的切线垂直的直线成为C在点M的法线.
已知抛物线C:x^2=4y,M为直线:y=-1上任意一点,过点M做抛物线的两条切线MA,MB,
一道圆锥曲线难题抛物线C的方程为X^2=4y,M为直线l:y=-m(m>0)上任意一点,过点M作抛物线C的两条切线MA,
P是抛物线C:y=1/2 X^2 上一点,直线l过点P并与抛物线C在点P的切线垂直,l与抛物线C交于另一点Q,当点P在
P是抛物线C:y=1\2 x²上的一点.直线L过点P并与抛物线C在P点切线垂直.L与抛物线相交与另一点Q
已知抛物线C的顶点在原点,焦点在X轴上且抛物线C上的点P(2,m)到焦点F的距离为3,斜率为2的直线l与抛物线C交于A,
已知抛物线经过原点O和X轴上另一点A,它的对称轴X=2与X轴交于点C,直线Y=2X-1经过抛物线上一点B(-2,M),且
已知抛物线C:y^2=4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A,B两点,O为坐标原点.
设抛物线C:y^2=2px的焦点为F,直线l过F且与抛物线C交于M、N两点,已知直线l与x轴垂直时,△OMN的面积为2(
已知y^2=4x,过点M(1,0)且斜率为k的直线l与抛物线C的准线相交于A点,与抛物线C的一个交点为B,若2AM向量=
已知抛物线的对称轴是直线x=3,顶点A在x轴上,且经过点B(1,-2),直线y=二分之一x+m与抛物线交于点B,C &n
在曲线y=√x上求一点M,使过M的切线平行直线x-2y+5=0,求过M切线方程与法线方程