高数第六版上册习题习题1-1第3题
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 23:36:15
高数第六版上册习题习题1-1第3题
设映射f:X→Y,A∈X,B∈X,证明
(1)f(A∪B)=f(A)∪f(B)
(2)f(A∩B)∈f(A)∪∩f(B)
设映射f:X→Y,A∈X,B∈X,证明
(1)f(A∪B)=f(A)∪f(B)
(2)f(A∩B)∈f(A)∪∩f(B)
证明:
1,任取y∈f(A∪B)
则存在x∈A∪B,使得y=f(x)
则x∈A或x∈B
则y∈f(A)或y∈f(B)
1.任取y∈f(A∪B),则存在x属于A∪B,使得y=f(x).
则x∈A或者x∈B,所以,y=f(x)∈f(A)或者y=f(x)∈f(B).
所以y∈f(A)∪f(B).所以f(A∪B)包含于f(A)∪f(B)
任取y∈f(A)∪f(B),则y属于f(A)或者f(B)所以存在x∈A或者B使得f(x)=y.
即x∈A∪B.所以y∈f(A∪B).所以f(A)∪f(B)包含于f(A∪B)
所以f(A∪B)=f(A)∪f(B);
2.任取y∈f(A∩B),则存在x∈A∩B,使得y=f(x).
则x∈A且x∈B,所以y=f(x)∈f(A)且y=f(x)∈f(B).
所以y∈f(A)∩f(B)
所以f(A∩B)包含于f(A)∩f(B)(集合和集合之间是包含关系,不是属于关系)
1,任取y∈f(A∪B)
则存在x∈A∪B,使得y=f(x)
则x∈A或x∈B
则y∈f(A)或y∈f(B)
1.任取y∈f(A∪B),则存在x属于A∪B,使得y=f(x).
则x∈A或者x∈B,所以,y=f(x)∈f(A)或者y=f(x)∈f(B).
所以y∈f(A)∪f(B).所以f(A∪B)包含于f(A)∪f(B)
任取y∈f(A)∪f(B),则y属于f(A)或者f(B)所以存在x∈A或者B使得f(x)=y.
即x∈A∪B.所以y∈f(A∪B).所以f(A)∪f(B)包含于f(A∪B)
所以f(A∪B)=f(A)∪f(B);
2.任取y∈f(A∩B),则存在x∈A∩B,使得y=f(x).
则x∈A且x∈B,所以y=f(x)∈f(A)且y=f(x)∈f(B).
所以y∈f(A)∩f(B)
所以f(A∩B)包含于f(A)∩f(B)(集合和集合之间是包含关系,不是属于关系)