作业帮 > 数学 > 作业

如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AD的中点,P是对角线AC上的一个动点,求PE+PD最小值.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 22:09:15
如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AD的中点,P是对角线AC上的一个动点,求PE+PD最小值.
不要乱复制.
如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AD的中点,P是对角线AC上的一个动点,求PE+PD最小值.
连接BE交AC于P,连接BD,
由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,
∴PE+PD=PE+PB=BE,
即BE就是PE+PD的最小值,
∵∠BAD=60°,AD=AB,
∴△ABD是等边三角形,
∵AE=DE,
∴BE⊥AD(等腰三角形三线合一的性质)
在Rt△ABE中,AE=1/2AB=1
BE= √(AB²-AE²) = 3
故PE+PD的最小值为 √3