高二数列练习题 数列{an}中,a1=4,an=4-4/a(n-1),数列{bn},bn=1/an-2,求:(1){bn
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 01:32:26
高二数列练习题 数列{an}中,a1=4,an=4-4/a(n-1),数列{bn},bn=1/an-2,求:(1){bn}为等差数列; (2){an}
数列{an},a1=4,an=4-4/a(n-1),数列{bn},bn=1/an-2,求:
(1){bn}为等差数列;
(2){an}的通项公式.
数列{an},a1=4,an=4-4/a(n-1),数列{bn},bn=1/an-2,求:
(1){bn}为等差数列;
(2){an}的通项公式.
n-b(n-1)=1/(2-4/(an-1))-1/(a(n-1)-2)
=a(n-1)/(2a(n-1)-4)-2/(2a(n-1)-4)
=(a(n-1)-2)/(2a(n-1)-4)=1/2,
所以数列{bn}是以b1=1/2为首项,公差为1/2的等差数列.
所以bn=n/2,故an=2+2/n.
参考:
an=4-4/a(n-1)
an-2=2-4/a(n-1)
=2{[a(n-1)-2]/a(n-1)}
于是有1/(an-2)=1/2+1/[a(n-1)-2]
所以有bn=1/2+b(n-1)
即bn-b(n-1)=1/2
故有数列{Bn}为等差数列,公差为1/2
b1=1/(a1-2)
=1/2.
所以有bn=n/2
于是有1/(an-2)=n/2
所以有an=(2/n)+2
=a(n-1)/(2a(n-1)-4)-2/(2a(n-1)-4)
=(a(n-1)-2)/(2a(n-1)-4)=1/2,
所以数列{bn}是以b1=1/2为首项,公差为1/2的等差数列.
所以bn=n/2,故an=2+2/n.
参考:
an=4-4/a(n-1)
an-2=2-4/a(n-1)
=2{[a(n-1)-2]/a(n-1)}
于是有1/(an-2)=1/2+1/[a(n-1)-2]
所以有bn=1/2+b(n-1)
即bn-b(n-1)=1/2
故有数列{Bn}为等差数列,公差为1/2
b1=1/(a1-2)
=1/2.
所以有bn=n/2
于是有1/(an-2)=n/2
所以有an=(2/n)+2
高二数列练习题 数列{an}中,a1=4,an=4-4/a(n-1),数列{bn},bn=1/an-2,求:(1){bn
在数列{an},{bn}中,a1=2,b1=4且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n
已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2 (1)求{an}的通项公式
在数列{an}中,已知a1=-1,an+a(n+1)+4n+2=0 (1)求bn=an+2n,求证:{bn}为等比数列
在数列an中a1=2,a(n+1)下标=4an-3n+1 1设bn=an-n求证bn是等比数列 2求数列an的前n项和s
数列{an}.a1=4,an=4-4/an-1(n>1),bn=1/(an-2),证明数列{bn}是等差数列,及求出数列
已知数列{an}中,a1=3,an+1-2an=0,数列{bn}中,bn*an=(-1)^n (n是正整数) (1)求数
(高二数学)已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an
在数列{an}中,a1=1,an+1=1-1/(4an),bn=2/((2an)-1).求证数列{bn}是等差数列,并求
已知数列{an}中,a1=2,an+1=4an-2/3an-1 bn=3an-2/an-1 求证;数列{bn}是等比数列
已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2.求{bn}通项公式