作业帮 > 数学 > 作业

x,y,z为实数,设A=x^2-2y+π/2,B=y^2-2z+π/3,C=z^2-2x+π/6,证明:A,B,C中至少

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 20:22:02
x,y,z为实数,设A=x^2-2y+π/2,B=y^2-2z+π/3,C=z^2-2x+π/6,证明:A,B,C中至少有一个大于零
x,y,z为实数,设A=x^2-2y+π/2,B=y^2-2z+π/3,C=z^2-2x+π/6,证明:A,B,C中至少
因为A+B+C=X^2+Y^2+z^2-2(X+Y+Z)+Pi=(X-1)^2+(Y-1)^2+(Z-1)^2+Pi-3>0
故A、B、C中至少有一个大于零.(否则A+B+C