如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC= .设直线AC与直线x=4交于点E. (1)求
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 06:57:04
如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC= .设直线AC与直线x=4交于点E. (1)求以
(1)如图;易知:△ABC∽△AFE;
∴ CBEF=ABAF;
由题意知:AF=8,AB=6,BC=2 3;
∴EF= 833,
即E(4,833);
设抛物线的解析式为:y=a(x-4)2+h(a≠0),由于抛物线经过C(2,2 3),O(0,0);
则有:{16a+h=04a+h=23,
解得 {a=-36h=833;
∴抛物线的解析式为y=- 36(x-4)2+ 833=- 36x2+ 433x;
其顶点坐标为(4,833),正好与E点坐标相同,故此抛物线一定经过E点;
(2)过M作MQ∥y轴,交x轴于Q,交直线CN于P;
易知:N(8,0),C(2,2 3);
可得直线CN的解析式为y=- 33x+ 833;
设点Q的坐标为(m,0),则P(m,- 33m+ 833),M(m,- 36m2+ 433m);
∴MP=- 36m2+ 433m-(- 33m+ 833)=- 36m2+ 533m- 833;
∴S=S△CMN= 12MP•|xN-xC|= 12×(- 36m2+ 533m- 833)×6=- 32m2+5 3m-8 3;
即S=- 32(m-5)2+ 932(2<m<8);
∵2<5<8,
∴当m=5时,Smax= 932;
即△CMN的最大面积为 932.
连BM即可.
∴ CBEF=ABAF;
由题意知:AF=8,AB=6,BC=2 3;
∴EF= 833,
即E(4,833);
设抛物线的解析式为:y=a(x-4)2+h(a≠0),由于抛物线经过C(2,2 3),O(0,0);
则有:{16a+h=04a+h=23,
解得 {a=-36h=833;
∴抛物线的解析式为y=- 36(x-4)2+ 833=- 36x2+ 433x;
其顶点坐标为(4,833),正好与E点坐标相同,故此抛物线一定经过E点;
(2)过M作MQ∥y轴,交x轴于Q,交直线CN于P;
易知:N(8,0),C(2,2 3);
可得直线CN的解析式为y=- 33x+ 833;
设点Q的坐标为(m,0),则P(m,- 33m+ 833),M(m,- 36m2+ 433m);
∴MP=- 36m2+ 433m-(- 33m+ 833)=- 36m2+ 533m- 833;
∴S=S△CMN= 12MP•|xN-xC|= 12×(- 36m2+ 533m- 833)×6=- 32m2+5 3m-8 3;
即S=- 32(m-5)2+ 932(2<m<8);
∵2<5<8,
∴当m=5时,Smax= 932;
即△CMN的最大面积为 932.
连BM即可.
如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC= .设直线AC与直线x=4交于点E. (1)求
1.矩形ABCD的顶点A,B坐标分别为(—4,0)和(2,0),BC=2根号3.设直线AC与直线X=4交于点E.(1)求
如图,矩形ABCD的顶点A.B坐标分别为(-4,0)(2,0),BC=2√3.设直线AC与直线x=4交于点E.
如图,矩形ABCD的顶点AB坐标分别是(-4.0)和(2.0),BC=2根号3,设直线AC与直线x=4交于点E(1).
如图已知一次函数y=2x+4的图像与x轴y轴分别交于点A和B且BC平行AO求点A、B、C的坐标,直线AC的表达式
如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4
如图,直线y=kx+b与x轴,y轴分别交于点E,F.已知点E的坐标为(-8,0),点A的坐标为(-6,0).
如图,矩形OABC的顶点A、C分别在x轴、y轴正半轴上,B点坐标为(3,2),OB与AC交于点P,D、E、F、G分别是线
如图,已知二次函数y=(x-1)2的图象的顶点为C点,图象与直线y=x+m的图象交于A、B两点,其中A点的坐标为(3,4
如图在平面直角坐标系中,直线 y=-1/2x+b( b>0)与 x轴、 y轴分别交于 A、B两点,已知C点的坐标为(4,
如图,在平面直角坐标系中,直线y=- x+4分别交x轴、y轴于A、B两点. (1)求两点的坐标; (2)设是直线AB
如图,平面直角坐标系中,直角梯形oabc的顶点A的坐标为(4,0)直线y=(3/4)x+3经过顶点B,与y轴交于点C,