三角函数的定义
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 08:11:11
三角函数的定义
三角形与三角函数
1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等
2、第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,3、第二余弦定理:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍
4、正切定理:三角形中任意两边差和的比值等于对应角半角差和的正切比值
5、三角形中的恒等式:
对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC
类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ
定义域和值域
sin(x),cos(x)的定义域为R,值域为〔-1,1〕 tan(x)的定义域为x不等于π/2+kπ,值域为R cot(x)的定义域为x不等于kπ,值域为R y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a^2+b^2) ,c+√(a^2+b^2)]
倍半角规律
如果角a的余弦值为1/2,那么a/2的余弦值为√3/2
反三角函数
y=arcsin(x),定义域[-1,1],值域[-π/2,π/2],图象用红色线条;
y=arccos(x),定义域[-1,1],值域[0,π],图象用兰色线条;
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;
1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等
2、第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,3、第二余弦定理:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍
4、正切定理:三角形中任意两边差和的比值等于对应角半角差和的正切比值
5、三角形中的恒等式:
对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC
类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ
定义域和值域
sin(x),cos(x)的定义域为R,值域为〔-1,1〕 tan(x)的定义域为x不等于π/2+kπ,值域为R cot(x)的定义域为x不等于kπ,值域为R y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a^2+b^2) ,c+√(a^2+b^2)]
倍半角规律
如果角a的余弦值为1/2,那么a/2的余弦值为√3/2
反三角函数
y=arcsin(x),定义域[-1,1],值域[-π/2,π/2],图象用红色线条;
y=arccos(x),定义域[-1,1],值域[0,π],图象用兰色线条;
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;