四棱锥P-ABCD中,PA垂直底面ABCD,AB垂直AD,AC垂直CD,∠ABC=60度,PA=AC=AB,E为PC中点
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:45:06
四棱锥P-ABCD中,PA垂直底面ABCD,AB垂直AD,AC垂直CD,∠ABC=60度,PA=AC=AB,E为PC中点
(1)求证CD垂直AE
(2)求证PD垂直平面ABE
(1)求证CD垂直AE
(2)求证PD垂直平面ABE
1.在平面PAC中,我们已经知道直线AC垂直于CD,再由于PA垂直底面ABCD,所以PA垂直于CD,CD垂直于两条不平行的边,所以CD垂直于平面ABCD,所以CD垂直于AE
2.在三角形PAC中PA=AC,E是底边中点,所以AE垂直于PC.上题证明了AE垂直于CD,所以AE垂直于平面PCD,所以AE垂直于PD.
再看平面PAD,由于AB垂直于AD,AB垂直于AD,所以AB垂直于平面PAD,所以AB垂直于PD.
以上两步得出的结论是:AE垂直于PD,AB垂直于PD,在平面ABE中,显然PD垂直于平面ABE
2.在三角形PAC中PA=AC,E是底边中点,所以AE垂直于PC.上题证明了AE垂直于CD,所以AE垂直于平面PCD,所以AE垂直于PD.
再看平面PAD,由于AB垂直于AD,AB垂直于AD,所以AB垂直于平面PAD,所以AB垂直于PD.
以上两步得出的结论是:AE垂直于PD,AB垂直于PD,在平面ABE中,显然PD垂直于平面ABE
四棱锥P-ABCD中,PA垂直底面ABCD,AB垂直AD,AC垂直CD,∠ABC=60度,PA=AC=AB,E为PC中点
四棱锥P-ABCD中PA垂直于平面ABCD,AB垂直于AD,AC垂直于CD,角ABC=60度,PA=AB=BC,E为PC
如图,在四棱锥P-ABCD中,AD//BC,AD=2BC,AB=PB,PC垂直BD,AC垂直BD,E为PA中点。 求证:
在底面为平行四边形的四棱锥P-ABCD中,AB垂直AC,PA垂直平面ABCD,且PA=AB,点E是PD中点
在底面为平行四边形的四棱锥P-ABCD中,AB垂直AC.PA垂直平面ABCD,且PA=AB,点E是PD的中点
在四棱锥P-ABCD中,PA垂直平面ABCD,AB垂直AD,AC垂直CD,角ABC=6O',PA=AB=BC,E是PC的
四棱锥P-ABCD中,PA垂直底面ABCD,PC垂直AD,底面ABCD为梯形,AB//DC,AB垂直BC,PA=AB=B
四棱锥P-ABCD中,PA垂直ABCD,PC垂直AD,底面ABCD为梯形,AB平行DC,AB垂直BC,PA=AB=BC,
在四棱锥P-ABCD中,PA垂直面于ABCD,AB垂直于AD,AC垂直于CD,角ABC=60度,PA=AB=BC,E
如图所示,四棱锥P-ABCD中,AB垂直AD,CD垂直AD,PA垂直底面ABCD
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60度,PA=AB=BC,E是PC的中
在四棱锥P—ABCD中,PA⊥平面ABCD,AB⊥AD,AC⊥CD,角ABC为60°,PA=AB=BC,E为PC中点,求