已知双曲线的两个焦点为F1(-根号10,0)、F2(根号10,0),M是此双曲线上的一点,且满足向量MF1点乘向量MF2
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/12 14:57:17
已知双曲线的两个焦点为F1(-根号10,0)、F2(根号10,0),M是此双曲线上的一点,且满足向量MF1点乘向量MF2=0
向量MF1的模乘向量MF2的模=2,则该双曲线的方程是
向量MF1的模乘向量MF2的模=2,则该双曲线的方程是
由MF1*MF2=0可知,MF1⊥MF2,
在直角三角形MF1F2中,F1F2=2√10,由勾股定理|MF1|²+|MF2|²=|F1F2|²,有
|MF1|²+|MF2|²=40,
又已知|MF1|*|MF2|=2,
两式联立解得|MF1|或|MF2|=√11±3,
由双曲线定义有2a=|(|MF1|-|MF2|)|=|(√11+3)-(√11-3)|=6,所以a=3,又c=√10,可求得b=1
所以双曲线方程为x²/9-y²=1.
在直角三角形MF1F2中,F1F2=2√10,由勾股定理|MF1|²+|MF2|²=|F1F2|²,有
|MF1|²+|MF2|²=40,
又已知|MF1|*|MF2|=2,
两式联立解得|MF1|或|MF2|=√11±3,
由双曲线定义有2a=|(|MF1|-|MF2|)|=|(√11+3)-(√11-3)|=6,所以a=3,又c=√10,可求得b=1
所以双曲线方程为x²/9-y²=1.
已知双曲线的两个焦点为F1(-根号10,0)、F2(根号10,0),M是此双曲线上的一点,且满足向量MF1点乘向量MF2
已知双曲线x^2-(y^2)/2=1的焦点为F1、F2,点M在双曲线上且向量MF1点乘向量MF2=0
已知双曲线x²-y²=1的焦点为F1,F2,点M在双曲线上,且向量MF1*向量MF2=0,求△F1M
已知双曲线两焦点是F1(-√10,0)F2(√10,0)M是双曲线上的点,且向量MF1*x向量MF2=0,|MF1|*|
已知F1,F2为双曲线x^2-y^2/2=1的焦点,点M在双曲线上,且向量MF1点乘向量MF2=0,则点M的纵坐标为
已知双曲线X方—Y方/2=1的焦点为F1 F2,点M在双曲线上且向量MF1乘向量MF2=0,则点M到X轴的距离为
已知F1,F2是双曲线xx/9-yy/16=1的两个焦点,点M在双曲线上.如果向量MF1垂直向量MF2,求三角形MF1F
向量的模怎么算已知双曲线的两个焦点F1(负根号十,0)F2(根号十,0),M(x,y)是此双曲线上一点,且满足:向量MF
已知椭圆的两个焦点为f1,f2,且均在x轴上,在椭圆上一点m(2根号6/3,根号3/3)满足向量mf1*mf2=0,求椭
已知双曲线X2-Y2/2=1的焦点 为F1 F2 点M在双曲线上且向量MF1点乘向量MF2等于零,则点M到X轴的距离为多
关于双曲线的一道题目已知双曲线x^2-y^2/2=1的焦点为F1,F2 ,点M在双曲线上且向量MF1*MF2=0,则点M
双曲线x^2/4-y^2=1的两个焦点为F1,F2,点M在双曲线上,△F1MF2的面积为根号3,则向量MF1*向量MF2