不等式证明题设f(x)在区间[0,1]上二阶可微,且f'(0)=f'(1)=0 证明存在c属于(0,1)满足f''(c)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 17:22:10
不等式证明题
设f(x)在区间[0,1]上二阶可微,且f'(0)=f'(1)=0 证明存在c属于(0,1)满足f''(c)>=4|f(1)-f(0)|
设f(x)在区间[0,1]上二阶可微,且f'(0)=f'(1)=0 证明存在c属于(0,1)满足f''(c)>=4|f(1)-f(0)|
白羊座星光 ,
这个题我做了起码有四五遍了,是道比较精典的微分中值证明题了.其关键是将函数在x=0,x=1处用麦克劳林展式展开.算了,我写一遍吧.
当X E(0,1)时,f(x)=f(0)+f'(0)x+f''(a)x^2 a E(0,x)
f(x)=f(1)+f'(1)(1-x)+f''(b)x^2 b E(x,1),
两式相减得,0=f(0)-f(1)+[f''(a)-f''(b)]x^2.移项并加绝对值为 |(1)-f(0)|=|f''(a)-f''(b)|x^2.因为二阶可微,故在二阶上也是连续的,通过介值定理能找到.f''(c)=1/2(f"(a)+f''(b)),然后你用一次绝对值不等式就可以了.注意X^2
这个题我做了起码有四五遍了,是道比较精典的微分中值证明题了.其关键是将函数在x=0,x=1处用麦克劳林展式展开.算了,我写一遍吧.
当X E(0,1)时,f(x)=f(0)+f'(0)x+f''(a)x^2 a E(0,x)
f(x)=f(1)+f'(1)(1-x)+f''(b)x^2 b E(x,1),
两式相减得,0=f(0)-f(1)+[f''(a)-f''(b)]x^2.移项并加绝对值为 |(1)-f(0)|=|f''(a)-f''(b)|x^2.因为二阶可微,故在二阶上也是连续的,通过介值定理能找到.f''(c)=1/2(f"(a)+f''(b)),然后你用一次绝对值不等式就可以了.注意X^2
不等式证明题设f(x)在区间[0,1]上二阶可微,且f'(0)=f'(1)=0 证明存在c属于(0,1)满足f''(c)
f(x)=x^2-x+c定义在区间[0,1]上,x1、x2均属于[0.1],且x1不等于x2.证明|f(x2)-f(x1
设函数f(x)在区间【0,1】上可导,且f(1)=0,证明至少存在一点$在(0,1)内,使得2$f($)+$*$f'$)
设函数f(x)在闭区间[0,1]上连续,且f(0)=f(1),证明至少存在一点a属于[0,1],使得f(a+1/2)=f
高数考研题:设函数f(x)在[0,4]上有二阶导数,且f(0)=0,f(1)=1,f(4)=2,证明存在c是f''(c)
设函数f(x)=ax^2+bx+c((a≠0),满足f(x+1)=f(-x-3),且f(-2)>f(2),解不等式f(-
设函数f(X)在区间[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上存在一点c,使f(C)=f(c+a)
设函数f(x)在闭区间(0,2)上连续,在(0,2)上可导,且f(1)=1,f(0)=f(2)=0,证明:存在a属于(0
设函数f(X)在区间[a,b]上连续,且f(a)b.证明存在c属于(a,b),使得f(c)=c
设f(x)在[a,b]上连续,在(a,b)可导,且f(a)=f(b)=0,证明存在c属于(a,b),使f'(c)+f(c
设函数f(x)在闭区间[0,1]上连续,且f(0)=1,f(1)=0,证明:存在&属于(0,1) 使得f(&)=&的平方
设函数f(x)在(-∞,+∞)可导,且满足f(0)=1,f'(x)=f(x),证明f(x)=e^x