作业帮 > 数学 > 作业

如图所示,CF,BE是△ABC的高,且BP=AC,CQ=AB(1)AP与AQ的关系(2)题中的△ABC改为钝角三角形,其

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 16:18:39
如图所示,CF,BE是△ABC的高,且BP=AC,CQ=AB(1)AP与AQ的关系(2)题中的△ABC改为钝角三角形,其它条件不变,上述结论还正确吗?请画图并证明你的结论.

如图所示,CF,BE是△ABC的高,且BP=AC,CQ=AB(1)AP与AQ的关系(2)题中的△ABC改为钝角三角形,其
1) AP = AQ
证:题目已经给了BP = AC,CQ = AB.又因为BE垂直于AC、CF垂直于AB,因此∠ABE = ∠ACQ.因此△ACQ≌△ABP.因此AP = AQ.证明:(1)
∵BE、CF是高,
∴ ∠CFB=∠CEB=90
∴ ∠FBP+ ∠PBC+∠PCB=∠ECB+∠PCB+∠PBC=90 即 ∠FBP=∠ECB
在△ABP和△ACQ中,∠FBP=∠ECB,BP=AC,CQ=AB
∴ △ABP≌△ACQ
∴ AQ=AP
(2)
结论不便,证法完全一样,只是P点在三角形A点外部,E,F分别在AB,AC延长线上