已知函数y=f(x)是定义在R上的偶函数,当x<0时,f(x)是单调递增的,则不等式f(x+1)>f(1-2x)的解集是
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:52:59
已知函数y=f(x)是定义在R上的偶函数,当x<0时,f(x)是单调递增的,则不等式f(x+1)>f(1-2x)的解集是______.
因为函数y=f(x)是定义在R上的偶函数,所以不等式f(x+1)>f(1-2x)等价为f(|x+1|)>f(|1-2x|),
因为x<0时,f(x)是单调递增,所以当x>0时,函数f(x)单调递减.
所以|x+1|<|1-2x|,平方得x2-2x>0,即x>2或x<0.
所以不等式f(x+1)>f(1-2x)的解集是(-∞,0)∪(2,+∞).
故答案为:(-∞,0)∪(2,+∞).
因为x<0时,f(x)是单调递增,所以当x>0时,函数f(x)单调递减.
所以|x+1|<|1-2x|,平方得x2-2x>0,即x>2或x<0.
所以不等式f(x+1)>f(1-2x)的解集是(-∞,0)∪(2,+∞).
故答案为:(-∞,0)∪(2,+∞).
已知函数y=f(x)是定义在R上的偶函数,当x<0时,f(x)是单调递增的,则不等式f(x+1)>f(1-2x)的解集是
已知函数y=f(x)是定义域在R上的偶函数,当x<0时,f(x)是单调递增的,则不等式f(x+1)>f(x)的解集是
已知函数y=f(x)是定义在R上的偶函数,当x<0时,f(x)是单调递增的,则不等式f(x)>f(1-2x)的解集是?
已知y=f(x+1)是定义在R上得偶函数,且在x>=0上单调递增,则不等式f(2x-1)
定义在R上的偶函数y=f(x),当x>0时,y=f(x)是单调递增的,f(x)*f(2)
已知函数y=f(x+1)是定义域为R的偶函数,且在[1,+∞)上单调递增,则不等式f(2x-1)<f(x+2)的解集为(
已知函数y=f(x+1)是定义域为R的偶函数,且在〔1.+∞)上单调递增,则不等式f(2x-1)<f(x+2)的解集为?
已知定义在R上的函数y=f(x)是偶函数,且当x≥0时,f(x)=2^(x-1)
已知f(x)是定义在R上的偶函数,当x>0时,f(x)为增函数,求解不等式f(2x)>f(3x-1)
已知f x 是定义在r上的偶函数,且当X≥0时,f(x)是单调函数,则满足f(x)=f(x+3/x+4)的所有x之和为(
已知函数y=f(x)是定义域在R上的偶函数,且在[1,+∞)上单调递增,则不等式f(2x-1)
已知函数f(x)是定义在R上的偶函数,当x>=0时,f(x)=-7x/(x^2+x+1),求y=f(x)(x>=0)在[