图,已知抛物线的方程C1:y=-1/m(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:53:30
图,已知抛物线的方程C1:y=-1/m(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由. 菁优网的看不懂.
解析:(1)依题意,将M(2,2)代入抛物线解析式得:
2=-1/m(2+2)(2-m),解得m=4.
(2)令y=0,即-1/4(x+2)(x-4)=0,解得x1=-2,x2=4,
∴B(-2,0),C(4,0)
在C1中,令x=0,得y=2,∴E(0,2).
∴S△BCE=1/2BC•OE=6.
(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.
如解答图1,连接EC,交x=1于H点,此时BH+CH最小(最小值为线段CE的长度).
设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=-1/2x+2,
当x=1时,y=3/2,∴H(1,3/2).
(4)分两种情形讨论:
①当△BEC∽△BCF时,如解答图2所示.
则BE/BC=BC/BF,∴BC²=BE•BF.
由函数解析式可得:B(-2,0),E(0,2),即OB=OE,∴∠EBC=45°,
∴∠CBF=45°,
作FT⊥x轴于点T,则∠BFT=∠TBF=45°,
∴BT=TF.
∴可令F(x,-x-2)(x>0),又点F在抛物线上,
∴-x-2=-1/m(x+2)(x-m),∵x+2>0(∵x>0),
∴x=2m,F(2m,-2m-2).
此时BF=√[(2m+2)²+(-2m-2)²]=2√2(m+1),BE=2√2,BC=m+2,
又BC²=BE•BF,∴(m+2)²=2√2·2√2(m+1),
∴m=2±2√2,
∵m>0,∴m=2√2+2.
②当△BEC∽△FCB时,如解答图3所示.
则BC/BF=EC/BC,∴BC²=EC•BF.
∵△BEC∽△FCB
∴∠CBF=∠ECO,
∵∠EOC=∠FTB=90°,
∴△BTF∽△COE,
∴TF/BT=OE/OC=2/m,
∴可令F(x,-2(x+2)/m)(x>0)
又点F在抛物线上,∴-2(x+2)/m=-(x+2)(x-m)/m,
∵x+2>0(∵x>0),
∴x=m+2,∴F(m+2,-2(m+4)/m),EC=√(m²+4),BC=m+2,
又BC²=EC•BF,∴(m+2)²=√(m²+4)·√[(m+2+2)²+4(m+4)²/m²]
整理得:0=16,显然不成立.
综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=2√2+2.
如图,已知抛物线的方程C1:y=- 1 / m (x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E
图,已知抛物线的方程C1:y=-1/m(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C
如图,已知抛物线y=-x²+2x+1-m与x轴相交于A、B两点,与y轴相交于点C,其中点C的坐标是(0,3),
如图,已知抛物线m:y=ax^2+bx+c(a≠0)与x轴相交于A、B两点(点A在x轴的正半轴上),顶点为C点,抛物线m
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点M在第一象限,抛物线与x轴相交于A、B两点(点A在点B的左边),与y
一道关于二次函数的题已知直线y=mx+2与y轴相交于点A,抛物线y=2x平方-(n-1)x-3m与y轴相交于点B,且AB
已知:直线AB:y=(1/2)x+3与x轴相交于点A,与y轴相交于点B,另外有点C(0,2)和点M(m,0),
如图所示,已知抛物线 Y=1/4X的平方-X+K 的图像与Y轴相交于点B(0,1),点C(M,N)在该抛物线图像上,
已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一
如图,已知抛物线y=-(x+1)(x-m)的顶点为D,与x轴相交于点A,B,与y轴正半轴交于点C ,且S三角形
如图,已知抛物线y=1/2x²+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标
圆的综合题如图1,直线y=- 3/4x+3与x轴相交于点A,与y轴相交于点B,点C(m,n)是第二象限内任意一点.以点C