如图 点A是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的短轴位于x轴下方的端点,过A作斜率为1的直线交椭圆
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:15:11
如图 点A是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的短轴位于x轴下方的端点,过A作斜率为1的直线交椭圆于B点,点P在y轴上,且BP//x轴,向量AB*向量AP=9
(1)若点P的坐标为(0,1),求椭圆C的方程
(2)若点P的坐标为(0,t),求实数t的取值范围
(1)若点P的坐标为(0,1),求椭圆C的方程
(2)若点P的坐标为(0,t),求实数t的取值范围
设AP的方程:y=x-b,则B(1+b,1).向量AB*向量AP=(1+b)^2=9,
∴ b=2,B(3,1)在椭圆C上, 9/(a^2)+(1/4)=1, a^2=12,椭圆C的方程为x^2/12+y^2/4=1.
∴ b=2,B(3,1)在椭圆C上, 9/(a^2)+(1/4)=1, a^2=12,椭圆C的方程为x^2/12+y^2/4=1.
如图 点A是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的短轴位于x轴下方的端点,过A作斜率为1的直线交椭圆
点A是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的短轴位于x轴下方的端点,过A作斜率为1的直线交椭圆于B点
已知点A是椭圆C:x2/a2+y2/b2=1(a>b>0)的短轴上位于x轴下方的端点,过A作斜率为1的直线交椭圆于B点,
圆锥曲线方程的问题已知点A是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的短轴上位于x轴下方的端点.过A作斜
如图,点A是椭圆:x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点.过A作斜率为1的直线交椭圆于另一点p,点B
已知过椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左顶点A作斜率为1的直线,与椭圆的另一个交点为M,与y轴的交
1.过椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左顶点A作斜率为L的直线,与椭圆的另一个交点为M,与y轴的交
如图,椭圆的中心在原点,焦点在X轴上,过右焦点F作斜率为1的直线交椭圆于A,B.若椭圆是存在点C,是%C
过椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左顶点A的斜率为k的直线交椭圆C于令一个点B...
【椭圆直线】椭圆的中心在原点,焦点在X轴上,过右焦点F作斜率为1的直线交椭圆于A,B.若椭圆是存在点C,是%...
设椭圆x 2/a 2+y 2/b 2=1(a>b>0)的右焦点F,斜率为1的直线过F,并交椭圆于A,B点,点O为坐标原点
过椭圆C:x^2/6+y^2/2=1的右焦点F作斜率为k(k>0)的直线L与椭圆交于A.B两点.且坐标原点O到直线L的距