过点M(-2,0),作直线l交双曲线x^2-y^2=1于A,B不同两点,已知向量OP=向量OA +向量OB①求点P的轨迹
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 09:54:54
过点M(-2,0),作直线l交双曲线x^2-y^2=1于A,B不同两点,已知向量OP=向量OA +向量OB①求点P的轨迹方程,
并说明轨迹是什么曲线②是否存在这样的直线使|OP|=|AB|?若存在,求出l的方程;若不存在,说明理由
并说明轨迹是什么曲线②是否存在这样的直线使|OP|=|AB|?若存在,求出l的方程;若不存在,说明理由
因为M(-2,0),设L为Y=kX+2k,
联立X^2-Y^2=1,
整理得:(k^2-1)*X^2+4k^2+4k^2+1=0
所以,A的横坐标+B的横坐标=4k^2/(1-k^2)
又设P(X,Y)
因为向量OP=向量OA +向量OB
所以X=A的横坐标+B的横坐标=4k^2/(1-k^2)
Y=A的纵坐标+B的纵坐标=k(A的横坐标+B的纵坐标)+4k
所以,Y=k(X+4)
又由X=4k^2/(1-k^2)推出k^2=X/(X+4)
所以Y^2=X^2+4X.
联立X^2-Y^2=1,
整理得:(k^2-1)*X^2+4k^2+4k^2+1=0
所以,A的横坐标+B的横坐标=4k^2/(1-k^2)
又设P(X,Y)
因为向量OP=向量OA +向量OB
所以X=A的横坐标+B的横坐标=4k^2/(1-k^2)
Y=A的纵坐标+B的纵坐标=k(A的横坐标+B的纵坐标)+4k
所以,Y=k(X+4)
又由X=4k^2/(1-k^2)推出k^2=X/(X+4)
所以Y^2=X^2+4X.
过点M(-2,0),作直线l交双曲线x^2-y^2=1于A,B不同两点,已知向量OP=向量OA +向量OB①求点P的轨迹
已知直线l过点D(-2,0),且与圆x^2/2+y^2=1交于不同的两点A,B,若向量OP=向量OA+向量OB,求点P的
已经过点D(-2,0)的直线l与曲线x^2/2+y^2=1交于不同两点A,B.若向量OP=向量OA+向量OB.求点P的轨
已知过点P(0,-2)的直线l交抛物线Y^2=4X于A,B两点,若向量OA*向量OB=4,求l方程
已知点N(1,2),过点N的直线交双曲线x^2-y^2/2=1于A B两点,且向量ON=2/1(向量OA+向量OB)
已知椭圆x^2/4+y^2/2=1,过F1的直线l与椭圆C交于A,B两点,若椭圆C上存在点P,使得向量OP=向量OA+向
椭圆参数方程题目4x^2+y^2=4 过m(0,1)直线L交椭圆于A B,P满足op向量=二分之一的(oa向量+ob向量
已知直线y=kx+m与椭圆x↑2/2+y↑2=1交于AB两点,且椭圆上的点P满足向量OP=向量OA+向量OB,证明四边形
已知过点N(1,2)的直线交双曲线x^2-y^2/2=1与A,B两点.且向量ON=1/2(向量OA+向量OB),(1)求
过点(0,-1)的直线l与抛物线y=-x^2交与A,B两点,O是原点,则向量OA*向量OB=
直线l:y=kx+根号2与双曲线C:x^2/3-y^2=1交于不同的两点A.B,且向量OA.向量OB<6,求k值范围
直线l:y=kx+m交椭圆x^2/3+y^2=1于不同的两点A,B.若m=k ,且向量OA·向量OB=0,求k的值