作业帮 > 数学 > 作业

已知P是三角形ABC所在平面内一点,若PA(向量)*PB(向量)=PB*PC=PC*PA,则P是三角形ABC的什么心?

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 17:20:35
已知P是三角形ABC所在平面内一点,若PA(向量)*PB(向量)=PB*PC=PC*PA,则P是三角形ABC的什么心?
A垂心 B重心 C内心 D外心
已知P是三角形ABC所在平面内一点,若PA(向量)*PB(向量)=PB*PC=PC*PA,则P是三角形ABC的什么心?
垂心
PA(向量)*PB(向量)=PB*PC
PB*(PA-PC)=0
PB*CA=0
即PB与CA垂直
同理可证PA与BC垂直,PC与AB垂直
所以是垂心