三角形ABC中,内角A.B.C的对边分别为a.b.c,已知a.b.c成等比数列,且cosB=3/4 ``````求答案啊
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 01:24:08
三角形ABC中,内角A.B.C的对边分别为a.b.c,已知a.b.c成等比数列,且cosB=3/4 ``````求答案啊````
法一
已知a.b.c成等比数列
所以a*c=b^2
正弦定理,a/sinA=b/sinB=c/sinC
sinA=a/b*sinB,sinC=c/b*sinC
又因为cosB=3/4 sin^2 B+cos^2 B=1
sinB=7^(1/2)/4
然后再算,如果是
(1)求cotA+cotC的值;
(2)设向量BA点乘向量BC=3/2,求a+c的值. 推荐看
法二
a,b,c成等比数列,则可表示为a,ar,ar^2
余弦定理:(ar)^2=a^2+(ar^2)^2-2a(ar^2)cosB
整理得2r^4-5r^2+2=0 r=1/√2 或 r=√2
所以三边的比为1:√2:2或者2:√2:1
因此不妨令a为最短边(若令c为最短边,结果一致)
从三角函数关系易得sinB=√7/4
通过正弦定理,sinA=√7/(4√2),sinC=√7/(2√2)
通过余弦定理,或sin^2+cos^2=1可以求出 cosA=5/(4√2),cosC=-1/(2√2)
cotA+cotC=5/√7-1/√7=4/√7
a*c*cosB=3/2 得ac=2,c=2a =>a=1,c=2 a+c=3
已知a.b.c成等比数列
所以a*c=b^2
正弦定理,a/sinA=b/sinB=c/sinC
sinA=a/b*sinB,sinC=c/b*sinC
又因为cosB=3/4 sin^2 B+cos^2 B=1
sinB=7^(1/2)/4
然后再算,如果是
(1)求cotA+cotC的值;
(2)设向量BA点乘向量BC=3/2,求a+c的值. 推荐看
法二
a,b,c成等比数列,则可表示为a,ar,ar^2
余弦定理:(ar)^2=a^2+(ar^2)^2-2a(ar^2)cosB
整理得2r^4-5r^2+2=0 r=1/√2 或 r=√2
所以三边的比为1:√2:2或者2:√2:1
因此不妨令a为最短边(若令c为最短边,结果一致)
从三角函数关系易得sinB=√7/4
通过正弦定理,sinA=√7/(4√2),sinC=√7/(2√2)
通过余弦定理,或sin^2+cos^2=1可以求出 cosA=5/(4√2),cosC=-1/(2√2)
cotA+cotC=5/√7-1/√7=4/√7
a*c*cosB=3/2 得ac=2,c=2a =>a=1,c=2 a+c=3
在三角形ABC中,内角A,B,C的对边分别为a,b,c已知a,b,c成等比数列,且cosB=3/4
三角形ABC中,内角A.B.C的对边分别为a.b.c,已知a.b.c成等比数列,且cosB=3/4 ``````求答案啊
三角形ABC中,内角A,B,C的对边分别是a,b,c,已知a,b,c成等比数列,且cosB=3/4.
三角形ABC中,内角A,B,C的对边分别是a,b,c,已知a,b,c成等比数列,且cosB=3/5
在三角形ABC中,内角A,B,C的对边分别是a,b,c,已知a,b,c成等比数列,且cosB=3/4.
在∠ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,且cosB=3/4.
在△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,且cosB=3/4.
三角形ABC中,内角A,B,C的对边分别是a,b,c,已知a,b,c成等比数列,且a+c=3,cosB=3/4.求三角形
三角形ABC中,内角A,B,C的对边分别是a,b,c,已知a,b,c成等比数列,且a+c=3,cosB=3/4.求向量A
△ABC中,内角A、B、C的对边分别为a、b、c,已知a、b、c成等比数列,且cosB=34
在△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,cosB=3/4
在三角形ABC中,角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列且cosB=3/4.