(3x 2y)dxdy的二重积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:02:03
∵A=[0,π]*[0,π]∴0≤x+y≤2π∵当0≤x+y≤π/2时,cos(x+y)≥0当π/2≤x+y≤3π/2时,cos(x+y)≤0当3π/2≤x+y≤2π时,cos(x+y)≥0∴∫∫|c
对二重积分的换元,与定积分不同,不能直接利用微分确定.面积元素dxdy换为其他的面积元素,用的是雅可比行列式J再问:我明白雅可比行列式J,可是从思路上来说我的这种想法应该没有问题啊?希望能解释错的原因
原式=∫[0,2π]dθ∫[0,1]√(1-r²)/(1+r²)rdr(极坐标变换)=π∫[0,1]√(1-r²)/(1+r²)d(r²)令u=r
思路:分部积分先将(3x+2y)关于y从0到2-x积分,再关于x从0到2积分原积分=6*x*(2-x)+2*(2-x)^2
代码:symsxyf;%定义两个符号变量f=inline(sqrt((-1.5-x)^2+(0.866-y)^2));dblquad(f,-3,3,-2.5,2.5)%积分x,0,1,y,1,2结果:
y=x与y=x^3在第一象限的交点为(1,1)该积分区域既是X-型的,又是Y-型的X-型:∫0到1∫x^3到x(e^x2)dydx=∫0到1(e^x2)(x-x^3)dx=1/2*[(2-x^2)*e
原式可以化成2+siny/(sinx+siny)或者3-sinx/(sinx+siny),两种情况都求积分,首先siny/(sinx+siny)的积分和sinx/(sinx+siny)应该是一样的,这
用几何法,就是求半球的体积πA^2/2就可以了再问:关键就是不知道怎么求啦,嘿嘿,大大,过程也给我写下嘛您QQ多少,我想当面请教下咯再答:你看清楚这道题的几何意义就是求半径为a的上半球
被积函数f(x,y)呢?如果认定被积函数f(x,y)=1,那么二重积分所表示的几何意义就是:以圆(x-1)²+y²=1为底,高度为1的圆柱体的体积.因为积分区域D:x²+
被积函数z=√[a²-x²-y²],积x²+y²+z²=a²的上半个球面.注意D:x^2+y^2=0,y>=0∫∫(a^2-x^2
D为圆(x-1)^2+(y-1)^2=1的内部,这个圆与x轴相切于点(1,0),与y轴相切于点(0,1),圆内所有点均在第一象限内.两个切点(1,0)与(0,1)是边界点,幅角a的范围是0到π/2,而
用极坐标的方法来求:∫∫(R^2-x²-y²)dxdy=∫(-π)(π)dθ∫0(R){(R^2-p^2)p}dp==∫(-π)(π){[R^2p^2/2-p^4/4]0(R)}d
把x换成rcosθy换成rsinθ反过来也不是不可以好像一般都是x是cos然后后面dxdy换成rdrdθ就行了再问:看不懂,再答:就是你吧x全部换成rcosθy换成rsinθ啊这有什么不懂得。。。换元
化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2
5x2y+3x2y+(-4x2y)=(5+3-4)x2y=4x2y,故答案为:4x2y.
令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限
max(xy,1)=xy(xy≥1),1(xy