三角形abc中def分别是bcadce
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:01:00
证明:D,E分别为BC,AC的中点,即DE为三角形ABC的中位线,则:DE/AB=1/2;同理可证:EF/BC=1/2;DF/AC=1/2.即DE/AB=EF/BC=DF/AC.故⊿DEF∽⊿ABC.
AB=AC∴∠B=∠C∠DEF=∠B=∠C∠DEC=∠B+∠BDE=∠DEF+∠FEC∴∠BDE=∠CEF∠B=∠CBD=CE∴△BDE≌△CEF∴DE=EF∴△DEF是等腰三角形
利用等高,求各三角形面积∵D是BC的二等分点∴BD=CD∴S△ABD=1/2S△ABC∵E是AD的三等分点∴DE=2/3AD∴S△BDE=2/3S△ABD∵F是BE的四等分点∴EF=3/4BE∴S△D
三角形ABD的面积=27/3=9(cm2)三角形BED的面积=9/3*2=6(cm2)三角形DEF的面积=6/3*2=4(cm2)
/>∵D、E、F分别是AB、BC、AC的中点∴DE=AC/2EF=AB/2DF=BC/2∴三角形ABC的周长与三角形DEF的周长和=3×三角形DEF的周长=18cm∴DEF的周长=6cm
过点D作DG平行于BC∵AB=2BC=1CA=√3∴△ABC是Rt三角形,∠C=90°∴DG⊥AC设正三角形△DEF的边长为x∴∠DFE=60°,DE=DF=x∵∠CFE=α,∠CFE+∠DFE+∠A
证明:根据题意,得向量AD=(1/2)(向量AB+向量AC)向量BE=(1/2)(向量BA+向量BC)向量CF=(1/2)(向量CB+向量CA)∴三式相加,得向量AD+向量BE+向量CF=(1/2)(
三角形ABc的周长是三角形DEF的周长的2倍.
【⊿ABC∽⊿EFD】证法1:∵点D、E、F分别是AB、BC、CA的中点∴DE,DF,EF均是⊿ABC的中位线∴DE=½AC,DF=½BC,EF=½AB即DE/DF/EF
因为点F是BE的四等分点所以三角形DEF的面积是三角形BED面积的四分之三所以三角形BED面积=30/四分之三=40平方厘米同理三角形ABD面积=40/三分之二=60平方厘米三角形ABC面积=60/二
S三角形BEF是S三角形BEC的一半S三角形BEC是S三角形ABC的一半即S三角形BEC是S三角形ABC的四分之一S三角形BEF等于4平方厘米
证明:∵AH⊥BC,E为AC中点∴EH=1/2AC∵D为BC中点.E为AB中点∴DF=1/2AC∴DF=EH同理HF=DE∵FE=FE∴△EFH≌△FED
在三角形ABC中,BE与CF分别是两边上的高,D是BC中点,你能说明三角形DEF是等腰三角形吗?三角形DEF是等腰三角形.证明如下:因为BE与CF分别是两边上的高,D是BC中点,所以在直角三角形BFC
既然两个三角形全等那么BC=EF=5cm
6平方厘米连接AE,BF,CD.可看出△BDE的面积是△BEA面积的2/3(等高,底是2比3)△BEA是三角形ABC面积的1/3(等高,底为1比3).所以三角形BDE的面积是三角形ABC面积的2/9.
DECF是平行四边形,DE//CF,、即DE//AC因为AD=BD,D是AB的中点.DE是三角形ABC中,AB,BC边上的中位线,所以.E是BC的中点BE=CE
证明:如图过C做CG垂直AB的延长线于G,过F做FH垂直DE的延长线于H∵∠ABC=∠DEF
因为AB:BC:AC=3:2:4,AB=18所以BC=12,AC=24因为D,E,F分别是AB,BC,AC的中点所以DE=0.5AC=12,DF=0.5BC=6,EF=0.5AB=9故三角形DEF的周