三角形所在平面外的一点,投影是该三角形的重心
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:55:47
延长BQ直线与PC交于D延长BO直线AC交于E则BQOEF在一个平面内∵O、Q为三角形ABC和PBC的垂心∴BD⊥PC,BE⊥AC∵PA⊥平面ABC,BE在平面ABC内∴PA⊥BE∴BE⊥平面PAC,
∵PA⊥PB,PC⊥PB∴PB⊥面PAC∴PB⊥AC又PP'⊥a,AC属于a∴PP'⊥AC∴AC⊥面PP'B∴AC⊥P'B同理BC⊥P'AAB⊥P'C∴P'为△ABC的垂心
设PA=a,PB=b,PC=c,则(s1)^2+(s2)^2+(s3)^2=(1/4)[(a^2)(b^2)+(b^2)(c^2)+(c^2)(a^2)](2)AB^2=a^2+b^2,BC^2=b^
四边形PABC是空间四边形作AB、BC的重点M、N连接PM、PN(过D、E)易得DE平行且相等于2/3MNMN平行且相等于1/2AC所以DE平行且相等于1/3AC
连接AM并延长与BC的交点就是BC中点P;连接AN并延长与CD的交点就是CD的中点Q因为:AM:MP=2:1;AN:NQ=2:1则:MN//PQ又:PQ在平面BCD内、MN在平面BCD外,则:MN//
作AB中点M,AC中点N,连MN则PM,PN分别过A',C',则由于PA':PM=2:3平面A`B`C`平行平面ABC
连结PA1,并延长交BC于A2,连结PB1,并延长交AC于B2,连结PC1,并延长交AB于C2, 连结A2B2,B2C2,A2C2. 因为A1、B1是三角形PBC、PCA的重心,所
延长PG1交AB于P1,延长PG2交BC于P2,延长PG3交CA于P3.由重心性质,PG1/PP1=2=PG2/PP2.且P,P1,P2,G1,G2共面由相似可得G1G2//P1P2.同理,G1G3/
过M或N作平行于BCD的平面交AB、AC、AD于E、F、G,则三角形EFG与BCD相似,相似比为2/3,那么EG=BD*2/3=8/3.很明显,M恰好平分EF,N恰好平分FG,故MN是三角形EFG的中
连结P和三个重心并延长交三边于三点再连结三重心,连结三交点可得连结得到的两三角形平行(重心3/2你应该知道)
垂直于三角形所在平面且过三角形外心的一条直线
先说一下思路:1、先说一下直线和平面平行的判定定理:*如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.2、连接AM、AN并延长,分别交BC、CD于点E、F.3、△AMN∽△A
设H1,H2,H3分别为PG1,PG2,PG3交于AB,BC,AC的点,则G1G2//H1H2,G2G3//H2H3.所以,G1G2//面ABC,G2G3//面ABC.又,G1G2与G2G3相交,故面
分别连接P与重心并延长交三边于MNQ,分别连接MNQ与A`B`C`.由“重心到顶点的距离与重心到对边中点的距离之比为2:1”可得相似,因此可得线线平行,再得面平行
1、因为重心是中线的三等分点,BG和AF都是它中线的三分之二,按三角形的相似性可知道AB//FG且FG=(1/3)AB,同理可知道AB、BC、AC分别平行于FG、EF、EG &n
重心是中线的交点E和F就分别是BD、CD的中点咯且AM/ME=AN/NF=2/1MN=(1/2*2/3)BC=1/3BC应该是BC=a你写错了吧
解题思路:有问题请添加讨论解题过程:连接AM并延长与BC的交点就是BC中点P;连接AN并延长与CD的交点就是CD的中点Q因为:AM:MP=2:1;AN:NQ=2:1则:MN//PQ又:PQ在平面BCD
B连CE,AD并延长,交BP于点F.在ΔBCP中,FE=1/3FC;在ΔPAB中,FD=1/3FA.∴在ΔFAC中,DE=1/3AC=4
过点p作CB,AC,AB的中线,分别交于点D,E,F.A1D=1/3PD,B1E=1/3PE,C1F=1/3PF.连接D,E,F.可得A1BI//DE,A1C1//DF,B1C1//EF;又因为DE/