(X,Y)的联合概率密度函数为f(x,y)=4xy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:39:58
(X,Y)的联合概率密度函数为f(x,y)=4xy
设(X,Y)的联合概率密度为f(x,y),求关于X,Y的边缘密度函数~

x的边缘概率密度函数:fX(x)=∫{从0积分到x}f(x,y)dy=∫{从0积分到x}4.8y(2-x)dy=2.4*x^2*(2-x)y的边缘概率密度函数:fY(y)=∫{从y积分到1}f(x,y

设随机变量(ξ,η)的联合概率密度为f(x,y)=4xy,0

直观的根据面积来算,x=y,x=2y,x=3y,都是直线,是无具体面积的而XY是在一个具体的区域内,故为0可以算一下XY的概率,来比记忆加以理解

随机向量(X,Y)的联合概率密度函数

1)a{∫(0~)e^(-x)dx}{∫(0~)e^(-y)dy}=1a*1*1=1a=12)F(x,y)=∫(0~x)∫(0~y)e^(-u+t)dudt=(1-e^(-x))(1-e^(-y))(

设二维随机变量(X,Y)服从二维正态分布,求(X,Y)的联合概率密度函数f(x,y)

套公式即可.σ1^2=DX=16,σ2^2=DY=25.ρ=Cov(X,Y)/(σ1σ2)=0.6,√(1-ρ^2)=0.8.f(x,y)=(1/32π)e^{(-25/32)[x^2/16-3xy/

(X,Y)联合概率密度

再问:主要就是这个上下限不明白,为什么不是0到1再答:画个图,只计算下三角形区域,如果是0,1则算的是整个矩形

设随机变量(X,Y)的联合概率密度为f(x,y)={kx,0

(1)∫∫(-∞,+∞)f(x,y)dxdy=k/3=1k=3(2)fX(x)=∫(-∞,+∞)f(x,y)dy=3x²,0

设二维随机变量(x,y)的联合概率密度函数为:f(x,y)={2;0<y<x<1 0;其他

密度函数尽量不要用大写,大写一般拿来表示分布函数fx(x)=∫(0~x)2dy=2xfy(y)=∫(y~1)2dx=2(1-y)x,y相互不独立因为fx(x)fy(y)=4x(1-y)不等於f(x,y

二维随机变量(X,Y)的联合概率密度为

对f(x,y)求积分上下限都是0-1,这个积极结果=1求出c*1/2*1/3=1/6c=1c=6.(2)前面的积分结果中把上下限换成0-0.5,此时c=6,求值.(3)当0

若X与Y的联合概率密度为f(x,y)=24xy,0

fx(x)=∫(0~1/Γ3)24xydy=12xy²](0~1/Γ3)=4xP(x

二维连续型随机变量(X,Y)的联合概率密度函数的问题

1)在第一象限内作以下三条曲线在第一象限内的部分y=xy=x^2x=1于是f(x,y)=k的区域即为这三条曲线围成的曲边三角形内部,记此区域为D其余部分f(x,y)均为零由归一化条件,(S表示积分号,

数理统计:设(X,Y)的联合概率密度为:f(x,y)=A,0

利用所有事件概率和一定等于1的原理来求.具体方法就是∫(-∞,+∞)∫(-∞,+∞)f(x,y)dydx=∫(0,1)dx∫(x,1)Ady=∫(0,1)(A-Ax)dx=1/2A=1所以A=2

概率与统计:设二维随机变量(X,Y)的联合密度函数为,如图

(1)p(x,y)=(1/3)e^(-3x)(1/4)e^(-4y)-->k=1/12.X和Y独立.(2)P(0

设二维随机变量(X,Y)的联合密度函数为.求概率等.

1)P(xy<1)很简单,就是对下图阴影的面积求二重积分∫(1/2~2)∫(1/2~1/y)1/(4x²y³)dxdy= ∫(1/2~2)1/(4(1/2)y

概率统计,8、设二维随机变量(X,Y)的联合概率密度为

再问:最后一题,X、Y是否相关?请问该怎么做?答案是线性相关。

知道x,y的联合密度函数,如何求z=x+y的概率密度函数

你用他们两个的范围表示出x和z的关系,也就是说在以z为横轴,x为纵轴的坐标系中画出区域,最后对x求积分就可以利用∫f(x,z-x)dx,上下线是x的范围,使用z表示的,这样求出来的就是结果,但要注意z

联合概率密度函数设随机向量(X,Y)的分布函数为F(x,y)=A(B+arctan x/2)(C+arctan y/3)

F(-∞,y)=A*(B-π/2)(C+arctany/3)=0,B=π/2F(x,-∞)=A*(B+arctanx/2)(C-π/2)=0,C=π/2F(+∞,+∞)=A(B+π/2)(C+π/2)