以BC为直径的圆O交AB于求证AE=DE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 15:53:38
以BC为直径的圆O交AB于求证AE=DE
在三角形ABC中,以BC为直径的圆O交AB于D,交AC于E,BD=CE,求证:AB=AC

连接od,oe三角形obd,oce三边相等,是全等三角形由此可知角abc等于角acb三角形abc是等腰三角形,ab=ac

以等腰三角形ABC的腰AB为圆O的直径的圆O交底边BC于点D

证明:(1)连接AD∵AB是⊙O的直径∴∠ADB=90°∵AB=AC∴BD=DC(2)连接OD∵BD=DC,OA=OC∴OD‖AC∵DE⊥AC∴DE⊥OD∴DE是⊙O的切线

RT三角形ABC中,角ABC=九十度,以AB 为直径的圆O交AC于D,过D的切线交BC于E,求证DE=½BC,

可证RT三角形OBE和RT三角形ODE全等,所以BE=DE.OD=OA=OB可证角C等于角EDC,所以DE=EC.所以DE=BC的一半TAN是什么呢?你可以根据上一步的结果来证,我不明白你说的TAN角

如图,以△ABC的边BC为直径作圆O分别交AB、AC于点F点E,AD⊥BC于D,AD交于圆O于M,交BE于H,求证:DM

证明:因为:△BDH相似于△ADCDH/DC=BD/ADDH×DA=DCxBD再连接MB、MC,则角BMC=90°所以:△BDM相似于△MDCDM^2=DCxBD故DM^2=DH×DA

如图,在Rt△ABC中,以直角边AB为直径的圆O交斜边于D,OE平行BC交AC于E.求证:DE是圆O的切线

证明:连接BD,OD∵OE//AC∴BE/CE=BO/AO=1∴BE=CE∵AB是直径∴∠ADB=90º,则∠BDC=90º∴DE=½BC=BE【直角三角形斜边中线等于斜

如图,在Rt△ABC中,以直角边AB为直径的圆O交斜边于D,OE平行BC交AC于E.求证:(1)DE是圆O的切线

证明(1)DE与半圆O相切.证明:连接OD、OE.∵O、E分别是BA、BC的中点,∴OE∥AC,∴∠BOE=∠BAC,∠EOD=∠ADO,∵OA=OD,∴∠ADO=∠BAC.∴∠BOE=∠EOD.∵O

如图所示已知△ABC中以AB为直径作圆O交BC于D,过点D作圆O的切线FE,交BC于E,且AE⊥DE.求证AB=AC

如图,连结OD,∵DE是圆O的切线,∴OD⊥DE,又∵AE⊥DE,∴OD∥AC,∴∠C=∠BDO,∵OB=OD,∴∠B=∠BDO,∴∠B=∠C,∴AB=AC 

如图 在三角形ABC中 ∠BAC=90° 以AB为直径的圆O交BC于点D,过D做圆O的切线交于点P.求证 PA=PC

∵2DP=AB,∴DP:AB=1:2 (切线到直角边的距离等于半径等于直径的一半)\x0d在直角△ABC和△DCP中,\x0d∵DP:AB=CP:AC=1:2 (相似三角形比例关系)∴PC=PA

AB为圆O的直径,弦DA、BC的延长线交于点P.求证:BC=DC.

证明如下:连结AC.∵AB是直径,∴AC⊥CB.∵BC=PC,∴RT⊿ACB≌RT⊿ACP(RT⊿即直角三角形).∴AB=AP.且∠P=∠B.又∵∠D=∠B(同弧所对圆周角相等)∴∠P=∠D,故⊿PC

如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,以B为切线交OD延长线于F.求证:EF与⊙O相

连接OEEFAD因为AB是直径所以角ADB=90度因为AB=AC所以AD是角BAC平分线(三线合一)所以弧DE=弧BD所以圆心角角BOF=角FOE因为OB=OEOF=OF所以三角形BOF全等于三角形E

如图,已知Rt三角形ABC中,角ABC=90°,以AB为直径作圆O交AC于D,过D作圆O的切线DE,交BC于E.求证:B

取AB中点F,则FD=FB,FD垂直DE角FBD=角FDB,角A=角ADF角FBE=角FDE=90度1故角EBD=角EDB故BE=DE2故角ADF+角DEC=90度,又角A+角C=90度故角EDC=角

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于D,交AC于E,以B为切点的切线交OD延长线于F.求证EF与圆

连接OE,因为角ABC等于角ACB等于角ODB,所以△ABC和△ODB相似,得出角BAC等于角BOC,所以AC和OF平行,角aeo等于eao等于eoa等于boe,又因为oe等于ob,△OEF和△OBF

在三角形ABC中,AB=AC,以AB为直径的圆O与BC交于点D,与AC交于点E,求证△DEC为等腰三角形

证明:连AD∵AB是直径∴AD⊥BCAB=AC∴CD=BD且∠BAD=∠CAD∴BD=DE∴DE=DC

如图 在三角形abc中,以BC为直径的圆O交于AB于D,交AC于E,BD=CE,求证AB=AC用两种方法

∵BD=CE∴BD弧=CE弧∴BE弧=CD弧∴∠C=∠B∴AB=AC证法2:连接CD,BE∵BC是直径∴∠BDC=∠CEB=90°RT⊿BDC,RT⊿CEB中∵BC=BC,BD=CE∴RT⊿BDC≌R

在三角形ABC中以BC为直径的圆心O交与AB于D,交AC于E,BD=CE,求证AB=AC

∵BD=CE∴弧bd=弧ce∴弧bde=弧ced∴∠B=∠C∴AB=AC同圆或等圆中,弦相等,对应的圆心角相等,弧相等,圆周角相等弧BD=弧CE加上公共弧DE就得到弧BDE=弧CED同弧所对圆周角相等

如图,已经△ABC,以AC为直径的圆O交AB于点D,点E为弧AB中点,连结CE交AB于点F,且BF=BC,求证BF是切线

点E为弧AB中点?应该是弧AD吧!连接CD易证三角形ADC为直角三角形,CE平分角ACD所以角FCD+角DFC=90度,角FCD=角ACF,角DFC=角FCB所以角ACF+角FCB=90度所以角ACB

在直角三角形ABC中,角BCA=90度以BC为直径的圆O交AB于E点,D为AC的中点连接BD交圆O于F点求证:BC/BE

连接BE、CE、CF、EF,因BC是直径,所以∠BEC=90°,因为同一弦所对的圆周角相等,所以∠BCE=∠BFE,又因为∠BCE+∠CBE=90°,∠A+∠CBE=90°,所以∠A=∠BCE=∠BF

在三角形ABC中,∠BAC=90,以AB为直径做圆O交BC于D,过D做圆O的切线交AC于P.求证:PA=PC

连接ADAB是直径∠ADC=90°PD是切线∠PDA=∠B∠C=∠PDCPC=PDPA=PDPA=PC

如图,在△ABC中,AB=AC,以AB为直径的圆O交AC于点E,交BC于点D.求证 (1)点D是BC中点 (2)△BEC

第一个问题:∵AB是⊙O的直径,∴AD⊥BC,又AB=AC,∴BD=CD.第二个问题:∵A、B、D、E共圆,∴∠CBE=∠CAD,又∠BCE=∠ACD,∴△BEC∽△ADC.第三个问题:由割线定理,有

以Rt△ABC的直角边AB为直径作圆O,交斜边BC于点D,OE∥BC,交AC于点E.求证:DE是圆O的切线.

连接OD(因为题目说了D在圆上)交EO于M∵BD∥OE∴∠B=∠AOE,∠BDO=∠DOE∵BO=DO∴∠B=∠BDO∴∠DOE=∠AOE∵在△DOM和△AOM中DO=AO∠DOE=∠AOEOE=EO