作PM⊥AB于点D,PF⊥CD于点F
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:39:55
(1)设直线AC的解析式为y=kx+b,∵A(4,8),C(0,6),∴4k+b=8b=6,解得k=12b=6,∴直线AC的解析式为:y=12x+6;(2)∵DE∥AC,直线AC的解析式为:y=12x
①因为,在⊙O1内AC所对的圆周角∠ABC=90°,在⊙O2内AD所对的圆周角∠ABD=90°,所以,AC、AD分别是⊙O1和⊙O2的直径.②在⊙O1中,同弧AB所对的圆周角∠AEB和∠ACB相等,即
1证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°
∵∠ABD=∠CBD,AB=CA,BD=BD∴△BAD≌△BCD∴∠ADB=∠CDB∴BD为∠ADC的平分线∵点D在BD上,且PM⊥AD于M,PN⊥CD于N∴PM=PN
大小相等啊,利用全等三角形
(1)连结OB,因为OA=OB,所以∠OAB=∠OBA,而CE=CB,故∠CBE=∠CEB=∠AED,因此∠OBC=∠OBA+∠CBE=∠OAB+∠AED=90度,故OB⊥BC,因此BC是⊙O的切线.
延长BC、AE交于H,AH和AB都为圆C的切线,且AC⊥HB∴∠H=∠ABC∵AH‖BM,∴∠H=∠MBC所以∠ABC=∠MBC所以BM是圆C的切线∠ABC=30°AC=8AD=4,CD=4√3,CF
证明:过E作AC的垂线,垂足为M.根据角平分线的性质:EM=ED过F作AB的垂线,垂足为N,CD和FN都垂直于AB.又EF平行AB,所以FN=ED,所以FN=EM,因为角B=角MCE(同角的余角相等)
证明:过E作AC的垂线,垂足为M.根据角平分线的性质:EM=ED过F作AB的垂线,垂足为N,CD和FN都垂直于AB.∵EF||AB,∴FN=ED,∴FN=EM,∵∠B=∠MCE(同角的余角相等)∠BN
sinA=√5/5,OA=2OM=2√5/5,AM=4√5/5,AB=8√5/5 sinA=√5/5,AD=1AE=√5/2 BE=8√5/5-√5/2=1
"AF平分叫CAB于E,交CB于F"一段应改为:AF平分CAB交CD于E,交BC于F.过F点作FM⊥AB于M,则FM‖CD∴∠BFM=∠GCD,∠BMF=∠GEC=90度∵CD垂直AB,垂足为D,∠A
(Ⅰ)证明:连接OC,因为OA=OC,所以∠OAC=∠OCA,(2分)因为CD为半圆的切线,所以OC⊥CD,又因为AD⊥CD,所以OC∥AD,所以∠OCA=∠CAD,∠OAC=∠CAD,所以AC平分∠
∵∠ACD=∠ACE=90°∴在Rt△ACE中,∠CAE+∠AEC=90°∵CD⊥AB∴在Rt△ADF中,∠FAD+∠AFD=90°∵AE平分∠BAC∴∠CAE=∠FAD∴∠AEC=∠AFD∵∠AFD
证明:在△ABC和△ADC中,AB=ADCB=CDAC=AC,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∵PE⊥BC于E,PF⊥CD于F,∴PE=PF.
过E做EG∥BF交BD于G所以EFBG为平行四边形,于是EG=BF,所以只要证明CE=EG因为∠ACB为直角,且CD⊥AB所以∠ACE=∠ABC因为∠ABC=∠AGE所以∠ACE=∠AGE因为AE为角
设ac交bd于o连接op则三角形boc的面积等于三角形bop和三角形cop因为三角形boc面积为30×40÷4=300且boco都是25pmpn都是他们的高所以25×(pn+pm)÷2=300∴pn+
连接BE、PD,过点P作AD的垂线,垂足为G,①因为点O为正方形ABCD对角线AC中点,∴点O为正方形中心,且AC平分∠DAB和∠DCB,∵PE⊥PB,BC⊥CE,∴B、C、E、P四点共圆,∴∠PEB
题目条件不足,理由如下.可以在CD的延长线上任取一点记为F,过F做AC的垂线于E这样的E,F满足题目中的所有条件,但是E,F是任取的所以AB=FC不一定成立.
是等腰直角三角形通过证明三角形BED全等于三角形AFD这样就得到ED=FD角BDE=角ADF然后由角相等得到角EDF为直角.做几何题的关键是要画出比较准的图形再问:步骤啊,