. 设u=f(x, ),其中f具有二阶连续导数,求 .
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:25:10
令u=x/y,v=y/x,偏导z/x=fu(u,v)du/dx+fv(u,v)dv/dx=fu(u,v)1/y-fv(u,v)y/x^2偏导z/y=fu(u,v)du/dy+fv(u,v)dv/dy=
u=f(x,y,z),y=sinxdu=əf/əx*dx+əf/əy*dy+əf/əz*dzdu/dx=əf/əx+
∵u=f(x,y,z),y是x的函数,z也是x的函数∴dudx=∂f∂x+∂f∂y+∂f∂z•dzdx∵y=sinx∴dydx=cosx再在方程φ(x2,ey,z)=0两端对x求导,可得φ′1•2x+
∂z/∂x=(∂f(u,v)/∂u)*(∂u/∂x)+(∂f(u,v)/∂v)*(∂v/
z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x
这是比较简单的求导了,你看一下书,在高数的下册把,多元函数求导中,我给你插图可能看不清,我也不知道怎么弄.下面那个人的解法不对,要是看不清我的插图就看看书就行了.
复合函数求偏导啊g对x一阶导数,-f'(y/x)*y/x^2+f'(x/y)g对y一阶导数,f'(y/x)/x+f(x/y)-f'(x/y)/y所以g对x二阶偏导,f''(y/x)*y^2/x^4+2
∂w/∂x=f‘1+yz·f’2(f‘1表示对f的第一个变量求偏导,1在下标其余类似)f具有二阶连续偏导数,∂²w/∂x∂z=
∵z=f(x,xy),令u=x,v=xy∴∂z∂x=f′1+yf′2∴∂2z∂x∂y=∂∂y(f′1+yf′2)=∂f′1∂y+∂∂y(yf′2)═(∂f′1∂u∂u∂y+∂f′1∂v∂v∂y)+f′
因为函数f(x)在(a,c)上可导,且f(a)=f(c),所以由Rolle定理知存在ξ1属于(a,c),使得f'(ξ1)=0;同理f(x)在(c,b)上可导,且f(c)=f(b),所以存在ξ2属于(c
au/ax=f1'(sinx,cosy,x+z)*cosx+f3'a^2u/(ayax)=f12''(-siny)*cosx+f32''(-siny)=-siny(f12''*cosx+f32'').
设u=xy,v=y/x,则z=x³f(u,v),au/ax=y,av/ax=-y/x²故az/ax=3x²f(u,v)+x³f'u(u,v)(au/ax)+x&
y=sin[f(x^2)],u=sinv,v=f(m),m=x²dy/dx=[dy/du][du/dv][dv/dm][dm/x]=cosv[f'(m)][2x]=2xcos[f(x^2)]
∫∫f(u,v)dudv是一个数,记为A,则f(x,y)=xy+A,两边在D上作二重积分,得∫∫f(x,y)dxdy=∫∫xydxdy+A∫∫dxdy即A=∫∫xydxdy+AσA=∫xdx∫ydy+
再问:谢谢亲的帮忙哦!
令a=x^2-y^2b=e^(xy)f具有一阶连续偏导数f1‘和f2’∂u/∂x=(∂u/∂a)×(∂a/∂x)+(∂
再问:请问那个f12的二阶导数是怎么来的啊再答:前面两个都来自f1'对x的偏导数再问:哦再问:再问您一下,还是这道题,先对x再对y求二阶连续偏导怎么做啊再问:u先对x再对y再答:再问:多谢再问:请问最