再菱形abcd中e是ad的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:02:40
再菱形abcd中e是ad的中点
如图,已知菱形abcd 中,ab等于ac,e,f分别是bc,ad的中点,连凄ae,cf.(1)证明

(1)∵四边形ABCD是菱形∴AB=BC又∵AB=AC∴△ABC是等边三角形∵E是BC的中点∴AE⊥BC(等腰三角形三线合一性质)∴∠AEC=90°,∵E、F分别是BC、AD的中点∴AF=1/2ADE

如图11,在菱形ABCD中,AC是对角线,点E、F分别是边BC、AD的中点.

(1)∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D,∵点E、F分别是边BC、AD的中点,∴BE=DF,在△ABE和△CDF中,∵AB=CD∠B=∠DBE=DF,∴△ABE≌△CDF(S

如图,在四边形ABCD中,ad=bc,E,F,G,H分别是AB,CD,AC,BD的中点.求证:四边形EGFH是菱形

证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG

如图在四边形ABCD中,AD=BC,点E F G H分别是AB CD AC BD的中点求证四边形EGFH是菱形

证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG

在菱形ABCD中.AB=AC.E,F分别是BC和AD的中点.连接AE和CF,求证:四边形AECF是矩形

因为ABCD是菱形,所以AD平行且等于BC,因为FE分别是AD,BC中点,所以AF=EC,所以AF平行且等于EC,所以四边形AECF是平行四边形.又因为AB=AC,E为BC中点,所以AE垂直BC(三线

菱形的判定已知四边形ABCD中,AD平行BC,OB等于OC,E.F.G.H分别是AB.BC.CD.DA边上的中点,求证;

已知四边形ABCD中,AD平行BC,OB等于OCOA=ODAC=BDEF平行等于1/2ACGH平行等于1/2ACEG平行等于1/2BDFG平行等于1/2BD四边形EFGH是菱形

菱形ABCD中 E是AD的中点 EF⊥AC交CB的延长线与点F

连AF,BD.因为菱形,BD垂直于AC;因为FE垂直于AC,所以FE平行于DB;因为AD平行于FC,所以FEDB是平行四边形,则FB=DE;因为E是AD中点,所以AE=ED=FB;又AD平行于FC,所

在四边形ABCD中,AB‖CD,BC=CD,AD⊥BD,E是AB的中点,求证:四边形BCDE是菱形

思路参考:由DE是直角三角形ABD斜边上的中线,知EB=ED,∠EBD=∠EDB,由AB‖CD知∠EBD=∠CDB,两直线平行内错角相等.由BC=CD知∠CBD=∠CDB,BD为公共边由角边角相等知:

如图,四边形ABCD中,AB//CD,BC=DC,AD⊥BD,.E是BD的中点,求证;四边形OCED是菱形

证明:在直角三角形ABD中,DE是斜边AB上的中线,所以DE=(1/2)AB由中线定义有BE=(1/2)AB=DE又BC=DC且AB//CD,所以题中四边形为菱形.

如图,菱形ABCD中,E是AD中点,EF⊥AC交CB的延长线于点F.

(1)DE=BF.理由如下:如图,设AB、EF相交于G,连接BD,在菱形ABCD中,BD⊥AC,∵EF⊥AC,∴EG∥BD,∵E是AD中点,∴EG是△ABD的中位线,∴AG=BG,又∵AD∥BC,∴∠

1如图,已知四边形ABCD是菱形,点E,F分别是CD,AD的中点,求证AE=CF 2已知菱形ABCD中,BD是对角线,过

1、∵DA=DCDF=1/2ADDE=1/2DC∴DF=DE∵∠D=∠D∴⊿ADE≌⊿CDF∴AE=CF2、∵∠E=90°BD=2DE∴∠ABD=30°∵AB=AD=8∴∠ABD=∠ADB=30°∴∠

如图,在菱形ABCD中,E是AD的中点,EF⊥AC交CB的延长线于点F.求证AB与EF互相平分

证明:连接BD,AF,BE,在菱形ABCD中,AC⊥BD∵EF⊥AC,∴EF∥BD,又ED∥FB,∴四边形EDBF是平行四边形,DE=BF,∵E为AD的中点,∴AE=ED,∴AE=BF,又AE∥BF,

如图 ,已知四边形ABCD中,AB=CD,E,F,G,H分别是BD,AC,AD,BC的中点,求证四边形EHFG是菱形.

在△=ABC中,因为F、H分别是AC,BC的中点,所以FH平行且等于1/2AB,同理可得EG=1/2AB,EH=1/2DC,GF=1/2DC,又因为AB=DC,所欲FH=EG=EH=GF,所以四边形E

如图,已知四边形ABCD中,AB=CD,E、F、G、H分别是BD、AC、AD、BC的中点.求证:四边形EHFG是菱形

证明:∵E、H分别为BD,BC的中点∴EH‖CD,EH=1/2CD同理可得FG‖CD,FG=1/2CD∴EH‖FG,EH=FG∴四边形EHFG是平行四边形同理可得FH=1/2AB∵AB=CD∴EH=E

已知,如图,在四边形ABCD中,AB=CD,E、F、G、H分别是BD、AC、AD、BC的中点,求证:四边形EHFG是菱形

证明:∵E、H分别为BD,BC的中点∴EH‖CD,EH=1/2CD同理可得FG‖CD,FG=1/2CD∴EH‖FG,EH=FG∴四边形EHFG是平行四边形同理可得FH=1/2AB∵AB=CD∴EH=E

如图,在矩形ABCD中,O是对角线AC的中点,EF是线段AC的中垂线,交AD、BC于E、F,求证:AECF是菱形

如图, ∵AO=CO,∠OAD=∠OCB(内错角),∠AOE=∠COF=90∴△AOE≌△COF, OE=OF∴AECF是菱形(对角线互相垂直且平分的四边形是菱形)

已知如图,等腰梯形ABCD中,M,N分别是两底AD,BC的中点,E,F分别是BM,CM的中点.求证:四边形MENF是菱形

∵M、N分别是等腰梯形上下底的中点,∴MN是等腰梯形的对称轴,∴MB=MC,又∵E、F分别是MB、MC的中点,∴ME=MF,考察△BMC,EN是中位线,∴EN∥MF,同理:FN∥EM,∴四边形MENF

已知,如图,等腰梯形ABCD中,M、N分别是两底AD、BC的中点,E、F分别是BM、CM的中点.求证:MENF是菱形

因为F,N为CM,BC中点,则FN//BM,同理EN//CM所以MENF为平行四边形又因为AB=CD,M为AD中点,所以三角形ABM与DCM全等,所以BM=CM所以MF=ME,邻边相等的平行四边形为菱

如图5,在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,PA=AD,E,F,分别是底面AB,PD的中点.

解(1):由图中可知:因为ABCD为菱形,那么AC⊥BD(对角线垂直),又因为PA⊥底面ABCD,那么PA⊥BD,因为BD是底面ABCD中的一条线,所以有PA⊥BD,又AC⊥BD,那么BD⊥平面PAC

梯形abcd中 ad‖bc,AB=CD,点M,N,E,F分别是边AD,BC,AB,DC的中点,求证MENF是菱形

连AC因为E.N是中点所以EN平行等于二分之一的AC同理MF平行等于二分之一的AC所以MF平行于EN同理EM平行于NF又AB=CDM是AD中点所以EM等于MF同理EN等于NF所以MENF是菱形