四棱锥p-ABCD的地面是边长为一的菱形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:06:54
四棱锥p-ABCD的地面是边长为一的菱形
如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,

解析:∵在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD过P作PG⊥AD∴PG⊥底面ABCD∵PA=PD=(根号2/2)AD,E,F分别为PC,BD的中点∴PA=PD=

四棱锥P--ABCD中,底面ABCD是正方形,边长为1,PD=1,PD垂直平面ABCD,求二面角A_PB_D的大小

连结BD,过A做AE垂直于BD交BD于E,连结PE.可证AE与BD垂直AE与PD垂直所以AP为平面PBD的垂线过E做EH垂直于BP交BP于H,连结AH,则角AHE即为二面角A-PB-D的平面角由平面关

如图4,在四棱锥P-ABCD中,侧面PAD是正三角形,底面ABCD是边长为2的菱形,

(1)找PC中点M,则NM//=ED,所以NMDE是平行四边形,所以EN//MD,所以EN//平面PDC (2)链接EB,由题可知,∠EBC=90°,即BC⊥EB,又因为三角形PAD为正三角

四棱锥P-ABCD中,侧面PDC是边长为2的正三角形且与底面ABCD垂直,角ADC=60度且ABCD为菱形.

感谢楼主这么看得起我来求助我~取CD中点为E,连结PE.过E做EF⊥AD于F,连结PF∵侧面PDC是正三角形∴PE⊥CD又∵侧面PDC是与底面ABCD垂直,侧面PDC∩底面ABCD=CD∴PE⊥底面A

在四棱锥P-ABCD中,侧面PCD是边长为2的正三角形且与底面垂直,底面ABCD是面积为2√3的菱形

(1)求证PA⊥CD作PE⊥DC交DC于E,因为PDC为边长为2的等边三角形,所以E为DC的中点.由ABCD的面积为2√3的菱形△ADC面积=√3=1/2*DA*DC*SIN∠ADC,√3=1/2*2

如图所示,四棱锥P—ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直.

取N为PA中点,连接MN;由已知可得PC=BC=PD=2,所以平面PBC为等腰三角形又M为PB中点,所以CM⊥PB同理可证:DN⊥PA所以平面CDNM⊥PAB,所以可得平面CDM⊥平面PAB.

已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别

分析:(I)由题意AD⊥CD,PD⊥CD,可得CD⊥平面PAD,因为EF∥CD,证明EF⊥平面PAD,(II)CD∥EF,所以CD∥平面EFG,故CD上的点M到平面EFG的距离等于D到平面EFG的距离

已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别

有不明白的可以追问!如果您认可我的回答.请点击下面的【选为满意回答】按钮,谢谢!

已知四棱锥P-ABCD的底面ABCD是平行四边形

连接AC∵ABCD是平行四边形∴向量AC=b+a向量CP=向量AP-向量AC      =c-(a+b)向量CE=1/2向量CP 

在四棱锥p-abcd中,地面abcd是边长为2的正方形,pd垂直平面abcd,且pd=ad,e为pd的中点

证明:1)∵PD⊥面ABCDAD属于面ABCD∴PD⊥AD又ABCD为正方形∴AD⊥CD∵CDPD属于面PCD∴AD⊥面PCD∴AD⊥PC2)连接BD交AC于F,连接EF因ABCD为正方形所以F为BD

在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=根号2/2AD

设G是P在AD上的垂足,则PG⊥ABCD(∵PAD⊥ABCD).∵GD⊥DC,∴PD⊥DC(三垂线),DC‖AB;∴PD⊥AB显然⊿APD等腰直角,(看三个边长)PD⊥PA.∴

立体几何已知四棱锥P-ABCD,地面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.

可以试着建立空间坐标系然后找出最大角再求二面角E-AF-C的余弦值.利用PA⊥平面ABCD

如图所示.四棱锥p-abcd中,pc⊥底面ABCD,pa=4,底面abcd是边长为2的正方形

1、过点A作PD的高,交PD于点M,那么AM距离就是点A到平面PCD的距离,运用直角三角形直角边与高之间的运算公式得h=(PA×AD)/√(PA^2+AD^2)=(4×2)/√20=4√5/52、直线

如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD

(1)∵四边形ABCD是正方形,E,F分别为BC,AD的中点∴DF=BE,DF∥BE∴四边形BEDF是平行四边形∴DE∥BF∴异面直线PB和DE所成的角为∠PBF∵BC⊥CD,PD⊥BC,PD与CD相

在底面是平行四边形的四棱锥P--ABCD中,

(1)PA⊥面ABCD,AC属于面ABCD,所以PA⊥AC   又AB⊥AC,因此AC⊥面PAB,PB属于面PAB,因此AC⊥PB(2)连接BD和AC,其交点为O,连接E

四棱锥P-ABCD中,地面ABCD时边长为1的正方形,PA⊥面ABCD ,PA=3,AE⊥PD于E,求AC与面EAB所成

以A为原点AD为X~~建立空间直角坐标系,可知P(0,0,3),D(1,0,0)B(0,1,0),C(1,1,0)所以向量PD=(1,0,-3)设E(x,0,z)得向量AE=(x,0,z)∵AE⊥PD

在四棱锥P-ABCD内任取一点Q 使得四棱锥Q-ABCD体积小于四棱锥P-ABCD体积一般的概率是

7/8?V(P)=S(ABCD)xh(P)/3V(Q)=S(ABCD)xh(Q)/3V(Q)/V(P)=h(Q)/h(P)所求概率即h(Q)小于一半改成小于1/4答案才是37/641-(3/4)x(3

在四棱锥p-abcd中,地面ABCD是边长为a的正方形,其对角线交点为o,侧面pad垂直地面ABCD,且PA=PD=[根

取AD中点为E,连接PE,∵PA=PD∴PE⊥AD∵侧面PAD垂直底面ABCD,交线为AD∴PE⊥底面ABCD连接EO∵ABCD为正方形∴EA,EO,EP两两垂直以E为原点建立坐标系E-xyz则A(a

四棱锥P-ABCD的底面ABCD为边长1的菱形,角BCD=60,E是CD中点,PA垂直底面ABCD,PA=2

1、连结BD,CD=BC,〈BCD=60度,∴△BCD是正△,E是CD中点,则BE⊥CD,CD//AB,故BE ⊥AB,AP⊥平面ABCD,BE∈平面ABCD,AP⊥BE,AP∩AB=A,∴