在正方形ABCD中,点F在CD上,射线AF交B求证ec垂直ch
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 00:26:55
我今天给杨磊和刘文苑讲了这道题、把右上角的三角形旋转下来,拼在左下角.证两次全等、…
解题思路:首先延长EB至H,使BH=DF,连接AH,证得△ADF≌△ABH,得出∠BAH=∠DAF,AF=AH,进一步得出△FAE≌△HAE,得出∠H=∠AFE,设BH为x,正方形的边长为a,在直角三
正方形所以AB=AD角B=角D=90°又AE=AF所以直角三角形ABE和ADF全等(HL)所以BE=DF菱形理由如下因为AC是正方形ABCD的对角线所以角BAC=DAC又角BAE=DAF所以角EAO=
显然,△ABE≌△ADF∴∠BAE=∠DAF∴∠CAE=∠CAF=30°∴△CAE≌△CAF∴CE=CF∵AE=AF∴AC垂直平分EF∴FG=EG=1,AG=√3∵△CEF是等腰直角三角形∴CG=EG
过点F做FM⊥AB,FM=AB,点A和点P是关于EF为对称轴的对称点,EF⊥AP∠MFE=∠BAP,利用等角的补角相等,△EFM≌△ABP.EF=AP=13
EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9
过H作HN垂直AB于N,过E作EM垂直BC于M,EF交MN于O,四边形EDCM和CHNB是矩形,角EMF=角HNG=90度,EM=CD=BC=HN,EM垂直HN,角FEM=90度角EOH=角GHN,三
(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵AE=AF,∴Rt△ABE≌Rt△ADF,∴BE=DF(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA=∠DCA=4
解题思路:证全等,运用直角三角形斜边上的中线等于斜边的一半解题过程:不好意思,刚才吃饭了,答案发迟了,如图,连接AE,MD的延长线交AE于G,交AB于H∵M是AF的中点,N是EF的中点∴MN∥AE(三
延长CB到G,使BG=DF,联接AG∵ABCD是正方形∴AB=AD ∠ABC=∠D=90° ∴∠ABG=∠D=90° ∴△ABG ≌△A
/>由ABCD是正方形可知AB=BC=CD=AD取BC中点H,连接AH,交BE于点N,则AF=CH=AD又由ABCD是正方形可知AF∥CH,所以AFCH是平行四边形,所以AH∥CF,因为BH=HC,所
在正方形ABCD中AB=AD,角B=角D=90°所以BE²=AE²-AB²=AF²-AD²=DF²所以BE=DF
那个回答人的意思是假设他们是对应点,但是这也符合实际啊,相当于你把正方形OEFG平移上去,使得F与O点重合,这样再一观察,他们就是对应点啦,当然这只是假设,还有就是他做的那个M点,因为可以证明出△ME
证明:过G做GH⊥BC,H是垂足,交BF于N.则RT△BNH∽RT△GNM,有∠EGH=∠FBC而:GH=BC所以:RT△BFC≌RT△GEH所以:BF=GE
证明:延长EB至I,使得BI=DF.联结AI.那么,在⊿ABI和⊿ADF中,IE=DF,∠IBA=∠FDA,BA=DA,所以⊿ABI≌⊿ADF.故AI=AF,∠DAF=∠BAI;由此易知∠IAE=45
∵四边形ABCD是正方形∴AB=AD∠B=∠D=90°∴ΔABE和ΔADF是直角三角形在RtΔABE和RtΔADF中;AE=AFAB=AD∴RtΔABE≌RtΔADF﹙HL﹚∴BE=DF回答完毕,
将三角形AFD旋转到正方形外
因为BE=CF,BC=CD所以CE=DF又因为AD=CD,∠C=∠CDA=90°所以△ADF全等于△DCE所以∠DEC=∠AFD,因为∠CDE=∠CDE所以∠DOC=∠C=90°所以∠AOE=∠DOC
(1)∵ABCD是正方形∴∠B=∠D=90°AB=AD又∵AF=AE∴△ABE全等于△ADF∴BE=DF(2)∵AC是ABCD的对角线∴∠DCA=∠BCA∵BE=DF∴FC=EC又∵DC=DC∴△DC