在正方形ABCD中,点P为对角线BD上一动点,点E在射线BC上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:46:55
为你提供精确解答、1、因为P点在平面ABCD内的射影为A所以PA垂直于面ABCD连结AC,BD,交点为O连结EO因为E,O分别为PD,BD中点所以EO平行且等于1/2PB又EO在面AEC内所以PB平行
点O为底面ABCD的中心,以O为圆心、1为半径作圆,若点P取在圆O内,则P到O的距离小于等于1,若在正方形的其他区域内取点P,则P到O的距离大于1.计算概率时可用圆与正方形的面积.因此,P到O的距离大
因为P在正方形对角线上,所以可以证明三角形DAP和三角形BAP全等所以PB=PD于是PB+PE就转化成PD+PE的最小值两点之间直线最短咯于是就是D、P、B三点在同一直线上时取到最小值就相当于是求直角
(Ⅰ)证明:∵CD⊥AD,CD⊥PA∴CD⊥平面PAD∴CD⊥AG,又PD⊥AG∴AG⊥平面PCD &nb
已知ABCD为正方形,点P是ABCD所在平面外的一点,P在平面ABCD上的射影恰好是正方形的中心,则四棱锥P-ABCD为正四棱锥
过点F做FM⊥AB,FM=AB,点A和点P是关于EF为对称轴的对称点,EF⊥AP∠MFE=∠BAP,利用等角的补角相等,△EFM≌△ABP.EF=AP=13
不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+
第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A
作CH⊥AB则CH=√2/2∴S△BCE=1/2*1*√2/2=√2/4连接BP则S△BPE=1/2*1*PF,S△BPC=1/2*1*PG∴1/2*(PF+PG)=√2/4∴PF+PG=√2/2
①⊿BEP等腰直角,AEPF为矩形,∴BE=EP=AF.又OA=OB.∠OAF=∠OBE=45º∴⊿OAF≌⊿OBE(SAS),∴OF=OE.∠FOA=∠EOP②∠FOE=∠FOA+∠AOE
PC=QD,AQ=PB,12-3t=t,t=3,AQ=3,AP=9,PB=3QA=DP,t=12*3-3t,t=9S-PQC=36,PC=6,t=10,Q在AB上,P在DC上,PC=6,QB=2,或假
那个回答人的意思是假设他们是对应点,但是这也符合实际啊,相当于你把正方形OEFG平移上去,使得F与O点重合,这样再一观察,他们就是对应点啦,当然这只是假设,还有就是他做的那个M点,因为可以证明出△ME
证明:(2)解法一:△ADQ的面积恰好是正方形ABCD面积的16时,过点Q作QE⊥AD于E,QF⊥AB于F,则QE=QF,12AD×QE=16S正方形ABCD=16×16=83,∴QE=43,由△DE
BQ=BC/2=1,即BQ为定值.∵点B和D关于AC对称,则PD=PB.∴PB+PQ=PD+PQ,故当点P在线段DQ上时,PD+PQ最小.DQ=√(CQ²+CD²)=√(1+4)=
∵P点在平面ABCD内的射影为A∴PA⊥平面ABCD则PA⊥CD∵四边形ABCD为正方形∴CD⊥AD则CD⊥平面PAD∵CD∈平面PCD∴平面PCD⊥平面PAD则二面角C-PD-A为直角
过F作FG⊥AB于G.易证△EFG≌△PAB,得EF=PA=13cm
∵线段D1Q与OP互相平分,且MQ=λMN,∴Q∈MN,∴只有当四边形D1PQO是平行四边时,才满足题意,此时有P为A1D1的中点,Q与M重合,或P为C1D1的中点,Q与N重合,此时λ=0或1故选C.
3种情况①AD=DQ,则∠DQA=∠DAQ=45°∴∠ADQ=90°,P为C②AQ=DQ,则∠DAQ=∠ADQ=45°∴∠AQD=90°,P为B③AD=AQ(P在BC上)∴CQ=AC-AQ=√2BC-
先证明ap垂直面bb1d1d再答:我忘了差不多了。可能有点繁琐。先证明面ABP垂直面BB1D1D再答:在通过线在面内。则AP垂直面BB1D1D再答:在通过线在面内。则AP垂直PB1再答:必须一步一步来