如图 一直AB为圆o的直径 CE垂直于CD FD垂直于CD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:20:17
连接BC.弧BC=弧CD,则BC=CD=6.AB为直径,则∠ACB=90°,AB=√(AC^2+BC^2)=10.由面积关系可知:AC*BC=AB*CE,8*6=10*CE,CE=24/5.
证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF连接OC,交BD于点M∵C是弧BD的中点∴OC⊥BD则O
∵DE是⊙O的直径∴AC=BC=1/2AB根据相交弦定理AC*BC=CE*CDCD=AC*BC/CE=3*3/1=9AB=CD+CE=9+1=10OC=1/2AB-CE=5-1=4有没办法证明DE与C
连结AC,CE切圆O于点C=>∠ECB=∠A,AB为圆O的直径=>∠ACB=90=>∠A+∠B=90∠B+DCB=90=>∠A=∠DCB,∴∠ECB=∠DCB =&g
证明:连接OC,OD∵CE是切线∴OC⊥CE∵BE⊥CE∴OC//BE∴∠AOC=∠ABD∵∠AOD=2∠ABD【同弧所对的圆心角等于2倍的圆周角】∴∠AOC=∠COD∴AC=CD【相等圆心角所对的弦
(1)延长CE交圆于M,则弧CD=弧CB=弧BM∴∠BCM=∠CBD∴CF=BF(2)连结OC交BD于N则△CFN≌△BFE∴BE=CN=3-1=2又OE=1∴CE=2√2∴BC=2√3
连接OD,∵C是弧BD的中点,∴∠COD=∠COB,∵∠A=∠1/2∠DOB,∴∠A=∠COB,∴OC‖AD
(1)延长CE交圆于M,则弧CD=弧CB=弧BM∴∠BCM=∠CBD∴CF=BF(2)连结OC交BD于N则△CFN≌△BFE∴BE=CN=3-1=2又OE=1∴CE=2√2∴BC=2√3
题目不完整,我估计F是CD与BE的交点连接EO,则CE垂直于EO,则角CEF+角OEF=90度,又因为AB为直径,故角AEB=90度,即角AEO+角OEF=90度,故角AEO=角CEFCE为切线,则角
圆周角学过吗?我不知道唉.因为CE是直径,所以弧EC=弧bc+弧be=180度.又因为角CAD=0.5弧BC,角BCE=0.5弧BE.所以角CAD+角BCE=0.5弧EC=90度.又因为CD垂直AB,
∵AB为直径∴∠ACB=90°∵CD⊥AB∴∠ACH+∠CAB=90°∠ABC+∠CAB=90°∴∠ACH=∠ABC∵O为圆心,AB为直径∴OB=OC=OA∴∠OCB=∠OBC=∠ABC∵CE为∠OC
已知如图AB是圆O的直径,点P为BA延长线上一点,PC为圆O的切线,C为切点,(8)求证BC^8=BD*BA(8)若AC=8DE=8求PC的长第一问:8)
∵AB为直径∴∠ACB=90°∵CD⊥AB∴∠ACH+∠CAB=90°∠ABC+∠CAB=90°∴∠ACH=∠ABC∵O为圆心,AB为直径∴OB=OC=OA∴∠OCB=∠OBC=∠ABC∵CE为∠OC
过O点作OM⊥EF,垂足为M.则有ME=MF即点M是EF的中点.∵CE⊥EFDF⊥EFOM⊥EF∴DF‖OM‖CE又点M是EF的中点∴OM是梯形CDEF的中位线则OC=OD∵AB是⊙O的直径∴OA=O
(1)证明:连接OC.∵CE⊥AB,CF⊥AF,CE=CF,∴AC平分∠BAF,即∠BAF=2∠BAC.∵∠BOC=2∠BAC,∴∠BOC=∠BAF.∴OC∥AF.∴CF⊥OC.∴CF是⊙O的切线.
第1问应该是求证CE是圆O切线,问者应该证明了.连接BF,交OC于M∵AB是圆O的直径,AB=10∴∠AFB=90°,OB=OC=5∵AD⊥CE,CE是圆O切线∴BF∥CE,BF⊥OC∴BM=FM,四
连接OC.AB为直径,C为弧AB的中点,则:OC⊥AB,OC=AO=OB=3;BF=OB-OF=2.设BD=X,则DE=DF=2+X.DE为圆的切线,则:DE²=BD*AD,(2+X)
证明:∵CD是⊙O的直径∴∠CED=90°(直径所对的圆周角是直角)∵CE//AB∴∠AFD=∠CED=90°∵AB是⊙O的直径∴EF=DF(垂径定理:垂直于弦的直径平分弦及弦所对的两条弧)
连接CO,设半径CO=R.则OE=OA-AE=R-4.OE^2+CE^2=CO^2,即(R-4)^2+36=R^2,R=6.5
延长CE交圆O于G因为CF=BF所以角FCB=角FBC所以弧CD=弧BG又因为CE垂直于AB所以弧CB=弧BG弧CD=弧CB