如图 在矩形abcd中 m n分别是ad bc中点,P,Q分别是BM,DN的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:33:08
因两个三角形的一个角对应相等,夹这角的两边成比例,则相似,故设CM=2x,CN=3x4x^2+9x^2=2.5^213x^2=2.5^2x=2.5√13/13CM=5√13/13CN=7.5√13/1
四边形MENF为菱形 ∵M,N为AD与BC中点∴BM=CM 又∵E,F为BM与CM中点∴EN=EM(直角三角形斜边中线长度等于斜边的一半) ∴EN=EM=FM=FN ∴四边形MENF为菱形
∵E、F分别是OA、OD中点∴EF是△AOD的中位线∴EF∥AD∵ABCD是矩形∴AD∥BC∴EF∥BC
解析:根据题意我们可以知道PA⊥PD;而平面PAD⊥平面ABCDPA=PD所以点P在平面ABCD上的射影是AD的中点又因为AD⊥CD所以PA⊥DC既PA⊥面PCD如果取PD中点为F则四边形AMNF为平
(1)因为四边形ABCD为矩形所以AB=CDAD=BC∠A=∠C又MN分别为AD、BC的中点所以AM=CN所以△MBA≌△NDC(2)四边形MPNQ是菱形,长方形ABCD已知AD∥BC,即MD∥BN,
联结BD交AC于点O∵四边形ABCD是矩形∴AD∥BC,AD=BC,AO=CO,DO=BO,AC=BD∴角DAC=角ACB∵BM⊥AC,DN⊥AC∴角CMB=角DNA∴△ADN≌△MCB∴AN=MN=
分析:(1)令E为PD的中点,连接AE,NE,根据三角形中位线定理,及中点的定义,我们易判断MN∥AE,结合线面平行的判定定理,即可得到MN∥平面PAD;(2)根据已知中,四边形ABCD是矩形,PA⊥
设AB=2m、AD=2n.令CD的中点为E.∵PA⊥平面ABCD,∴PA⊥AM、PA⊥AD,又△PAD是等腰三角形,∴PA=AD=2n.∵ABCD是矩形,∴BC=AD=2n、BC⊥BM.∵AM=BM、
证明:因为:P、M、N、Q分别是AC、AB、CD、MN的中点所以:MP=(1/2)BC NP=(1/2)AD而BC=AD所以:MP
连接EF四边形ABFE是平行四边形同理四边形EFCD是平行四边形M是BE中点,N是CE中点△BEC中,MN‖BC,MN=1/2BC
取PC中点M,连结EM、FM,则EM是△PDC中位线,EM//PD,同理FM//BC,∵四边形ABCD是矩形,∴BC//AD,∴FM//AD,∵AP∩PD=P,EM∩FM=M,∴平面EFM//平面PA
在△MBF和△MEA中:∵AD∥BC∴∠MBF=∠MEA,∠MFB=∠MAE又E、F分别是AD、BC的中点∴BF=EA∴△MBF≌△MEA∴BM=ME同理:CN=NE∴MN是△EBC的中位线∴MN∥B
(1)∵矩形ABCD∴AD∥CB∴∠MDB=∠NBD∵MN垂直平分BD∴BO=DO∵∠MOD=∠NOB∴△MOD≌△NOB(ASA)∴ON=OM∴BD⊥MN且BD、MN互相平分∴四边形MBND是菱形(
简单写一下:1.取CD中点E,连ME、NE易证ME∥AD,NE∥PD(中位线)∴面NME∥面PAD2.梯形作FN∥BC交PB于F,连FM∵ME∥BC,NF∥BC∴ME∥NF∴四边形MENF是梯形也可以
四边形MMPNQ是平行四边形证明:因为四边形ABCD是矩形所以AD=BCAD平行BC因为M,N分别是AD,BC的中点所以AM=DM=1/2ADBN=CN=1/2BC所以DM=BN所以四边形BMDN是平
因为ABCD为矩形,EF分别是AB,CD的中点所以AE//DF且AE=DF所以AEFD为平心四边形又因为角A=90°所以AEFD为矩形
证明:(Ⅰ)取的PD中点为E,并连接NE.AE∵M、N分别为AB、PC的中点∴NE∥CD且NE=12CD,AM∥CD且AM=12CD∴AM∥NE且AM=NE∴四边形AMNE为平行四边形∴AE∥MN又∵
S矩形ABCD=3S矩形ECDF推出AF=2FD——(1)矩形ABCD~矩形ECDF且AB=2推出AF*FD=FE*FE=AB*AB=4(2)设FD=x,则由(1)得AF=2x未知数代入(2)中,2x
答案=12求解如下:答:因为:S矩形ABCD=9S矩形ECDF所以:AB*BC=9*EC*CD,又因为:AB=CD=2所以:BC=9EC(1)因为:矩形ABCD~矩形ECDF所以:AB/EC=BC/C
取PD中点为E,连接AE,EN,∵M,N分别是AB,PC中点∴EN//CD且EN=1/2*CD∵AM//CD且AM=1/2CD∴AM//=EN∴四边形AMNE是平行四边形∴MN//AE∵PA⊥面ABC