如图 已知AB为圆O的直径弧BC=2弧AO
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:10:32
证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.又∵AB=AC,∴AD是∠BAC的平分线,即∠1=∠2.∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC.∵DE是⊙O
(1)第一问有点无厘头~BD=BE.BC⊥AB.AB≥DE.∠EDB=∠DAB.∠ADB=90°.………………汗这种问题(2)因为∠DCB=∠BCA,∠CDB=∠CBA=90°,所以△DCB∽△BCA
(1)证明:连接OD交BC于F;∵D为弧BC的中点,∴OD⊥BC,∵AB为直径,∴∠ACB=90°;又∵DE⊥AC,∴∠CED=∠ECF=∠CFD=90°,∴∠FDE=90°,即OD⊥DE;又∵OD为
先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A
1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D
(1)连接OD∵OC∥AD∴∠COD=∠ODA,∠BOC=∠OAD∵OA=OD∴∠OAD=∠ODA∴∠BOC=∠DOC∵OB=OD,OC=OC∴△BOC≌△DOC∴∠ODC=∠OBC=90°∴CD是圆
因为角aeb=角acb因为ae直径AD为BC上的高所以角aeb=角aec=角acb所以三角形abe和adc相似所以AB/AE=AD/AC得AB·AC=AE·AD
连接DB,DO.∵AB为直径,∴∠ADB=90∴AD⊥BD∵AD‖OC∴OC⊥BD又∵OD=OB∴OC为等腰△ODB的BD边垂直平分线∴∠COB=∠COD2、在△COB和△COD中OD=OBCO=CO
解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.
证明:连接OC.∵OD⊥BC,O为圆心,∴OD平分BC.∴DB=DC,在△OBD与△OCD中,OB=OCDO=DODB=DC∴△OBD≌△OCD.(SSS)∴∠OCD=∠OBD.又∵AB为⊙O的直径,
∵四边形ABCD内接于圆o∴∠BAD+∠BCD=180°∵AD∥BC∴∠BCD+∠ADC=180°∴∠BAD=∠ADC∴梯形ABCD是等腰梯形,AB=CD∵AB=BC∴AB=BC=CD∴∠AOB=∠B
解题思路:用圆性质证明解题过程:请把完整的条件写一下。最终答案:略
因为AB是圆的直径所以2AO=AB又D为AC的中点所以2AD=AC又角DAO=角CAB所以三角形DAO相似于三角形CAB所以2OD=BC=8cmOD=4
证明:如图,连接OC;∵BC∥OP,∴∠B=∠POA,∠BCO=∠COP,∵OB=OC,∴∠B=∠OCB,∴∠COP=∠AOP;∵OC=OA,OP=OP,∴△PCO≌△PAO,∴∠OCP=∠OAP=9
(1)证明:连接OD,∵OC//AD,∴∠DAO=∠COB,∠ADO=∠DOC∴∠DOC=∠BOC,∵DO=BO,CO=CO∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º即DC
连接B,C,由于三角形ABC为直角三角形,得BC=2,弧BC的度数∠BAC=30°,∠BOC=60°.阴影部分面积等于三角形AOB与扇形BOC的面积之和,即为√3+4∏/6=√3+2∏/3.
C在圆弧上,AB为圆O的直径,所以三角形ACB为直角三角形,∠ACB=90°,OD//BC,交AC于点D,所以∠ADO=∠ACB=90°,∠AOD=∠ABC,∠A=∠A,故直角三角形ADO∽直角三角形
假设C在圆弧上,AB为圆O的直径,所以三角形ACB为直角三角形,∠ACB=90°,OD//BC,交AC于点D,所以∠ADO=∠ACB=90°,∠AOD=∠ABC,∠A=∠A,故直角三角形ADO∽直角三
假设C在圆弧上,AB为圆O的直径,所以三角形ACB为直角三角形,∠ACB=90°,OD//BC,交AC于点D,所以∠ADO=∠ACB=90°,∠AOD=∠ABC,∠A=∠A,故直角三角形ADO∽直角三
1)因为AB为直径,所以∠AEB=90°,∠ADB=90因为AB=AC所以BD=CD又AO=BO,所以OD是三角形ABC的中位线,所以OD‖AC,所以OD⊥BE2)在直角三角形BCE中,BC=2DE=