如图 点c是以ab为直径的圆o上的一点,直线ac与过b点的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 01:57:19
设AH=x,AO=r,C是以AB为直径的半圆O上一点,CH⊥AB于点H,CH^2=AH*HB=x(2r-x),∴CH=√[x(2r-x)],E为CH中点,∴EH=CH/2=(1/2)√[x(2r-x)
“AD交BD于点E”应该是“AC交BD于点E”(1)C是劣弧BD的中点,所以弧cd=弧cb,所以角cad=角cab又角cdb=角cab,所以角cde=角cad,所以三角形DEC相似三角形ADC(2)相
1.连接BC,∵CD是切线∴OC垂直DC∴AD平行于OC∴△DAF∽△OCF∴AF/FC=AD/OC连接BE交OC于G∵AB是直径∴∠AEB=90°,∵AB是直径∴BE平行于DC∴OG垂直BE∴OG=
①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A
(1)连接OC,OE,O和E分别为AB和BD中点,所以OE//AD,即
∵CD切⊙O于C,∴∠DCN=∠DAM,又∠CDN=∠ADM,∴△CDN∽△ADM,∴∠CND=∠AMD,∴∠CMN=∠CNM,∴△CMN是以MN为底边的等腰三角形.再问:∵CD切⊙O于C,∴∠DCN
AC=(1/2)AB,∴AC=5(cm)理由如下:设⊙O半径OA=OB=r,且AO是圆⊙1的直径,∴∠OCA=90°,即OC⊥AB,∴△BOC≌△AOC(H,L)∴AC=BC=5.证毕.
∵CH⊥AB,DB⊥AB∴CH‖BD∵E是CH中点∴F是BD中点即F为RT△BCD斜边上的中点,那么∠CBF=∠FCB因为∠CBF=∠BAC=ACO∴∠GCO=ACB=90°.即CG是⊙O的切线过F做
证明:(1)∵CH⊥AB,DB⊥AB,∴△AEH∽△AFB,△ACE∽△ADF.(1分)∴EHBF=AEAF=CEFD.∵HE=EC,∴BF=FD.(3分)(2)连接CB、OC,∵AB是直径,∴∠AC
(1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽△AFB,△ACE∽△ADF,∴EHBF=AEAF=CEFD,∵HE=EC,∴BF=FD(2)证明:连接CB、OC,∵AB是直径,∴∠ACB=90°∵
这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid
①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+
1、连接OD、OC,对三角形OAC和三角形ODC,三对应边相等,所以全等,得∠ODC=∠OAC=90°,所以CD是圆O切线2、OC与AD的交点为G依题意可知CG=AD=2BDOC平行BD,DF:FG=
4+4FG+FG^2=2BG^2=2(FG^2-BF^2),BF=24+4FG+FG^2=2FG2-8,FG^2-4FG-12=0.
连接BE∵AE为圆O直径∴∠ABE=90°∵AD为△ABC的高∴∠ADC=90°在△ABE与△ADC中,∠ABE=∠ADC,∠E=∠C(同弧所对的圆周角相等)∴△ABE∽△ADC∴AB/AD=AE/A
(Ⅰ)证明:∵E,F分别是PB,PC的中点,∴BC∥EF,又EF⊂平面EFA,BC不包含于平面EFA,∴BC∥面EFA,又BC⊂面ABC,面EFA∩面ABC=l,∴BC∥l,又BC⊥AC,面PAC∩面
1.AB是直径,故∠C=90°弧PC的长是1/4的圆周长,故其对应圆周角∠MBC=45°故△MBC为等腰直角三角形,故MC=BC2.最短9.6cm,最长12cm3.判别式△=(m+8)^2-8(m+5