如图 点c是以ab为直径的圆o上的一点,直线ac与过b点的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 01:57:19
如图 点c是以ab为直径的圆o上的一点,直线ac与过b点的
如图已知C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点切线相交于点D,E为CH中点,连接AE并延长交

设AH=x,AO=r,C是以AB为直径的半圆O上一点,CH⊥AB于点H,CH^2=AH*HB=x(2r-x),∴CH=√[x(2r-x)],E为CH中点,∴EH=CH/2=(1/2)√[x(2r-x)

点ABCD是以AB为直径的圆O上四个点,C是劣弧BD的中点,AD交BD于点E,AE=2,EC=1

“AD交BD于点E”应该是“AC交BD于点E”(1)C是劣弧BD的中点,所以弧cd=弧cb,所以角cad=角cab又角cdb=角cab,所以角cde=角cad,所以三角形DEC相似三角形ADC(2)相

如图,AB为圆O的直径,C为圆O上一点,AD和过C点的切线垂直,垂足为D

1.连接BC,∵CD是切线∴OC垂直DC∴AD平行于OC∴△DAF∽△OCF∴AF/FC=AD/OC连接BE交OC于G∵AB是直径∴∠AEB=90°,∵AB是直径∴BE平行于DC∴OG垂直BE∴OG=

急!如图 ab是半圆o的直径,C为圆上一点,过C作半圆的切线

①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A

如图,D是以AB为直径的圆O的直径AB延长线上一点,DC切圆O于C,角ADC的平分线PM交AC于M,交BC于N,求证三角

∵CD切⊙O于C,∴∠DCN=∠DAM,又∠CDN=∠ADM,∴△CDN∽△ADM,∴∠CND=∠AMD,∴∠CMN=∠CNM,∴△CMN是以MN为底边的等腰三角形.再问:∵CD切⊙O于C,∴∠DCN

圆Q1是以圆O的半径OA为直径的圆,且与圆O的弦AB相交于点C,已知AB=10CM求AC的长

AC=(1/2)AB,∴AC=5(cm)理由如下:设⊙O半径OA=OB=r,且AO是圆⊙1的直径,∴∠OCA=90°,即OC⊥AB,∴△BOC≌△AOC(H,L)∴AC=BC=5.证毕.

如图,已知C是以AB为直径的半圆O上一点,CH⊥AB,直线AC与过B点的切线相交于点D,E为CH中点,连AE并延长交BD

∵CH⊥AB,DB⊥AB∴CH‖BD∵E是CH中点∴F是BD中点即F为RT△BCD斜边上的中点,那么∠CBF=∠FCB因为∠CBF=∠BAC=ACO∴∠GCO=ACB=90°.即CG是⊙O的切线过F做

如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH的中点,连接AE

证明:(1)∵CH⊥AB,DB⊥AB,∴△AEH∽△AFB,△ACE∽△ADF.(1分)∴EHBF=AEAF=CEFD.∵HE=EC,∴BF=FD.(3分)(2)连接CB、OC,∵AB是直径,∴∠AC

如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并

(1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽△AFB,△ACE∽△ADF,∴EHBF=AEAF=CEFD,∵HE=EC,∴BF=FD(2)证明:连接CB、OC,∵AB是直径,∴∠ACB=90°∵

如图,C为圆O直径AB上的一动点,过点C的直线交圆O

这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid

已知圆O的半径为6,AB是圆O的一条直径,C是直径AB上的一点,过点C作CD垂直AB,交圆O于点D,若CD等于三倍根号3

①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+

如图△ABC中,∠BAC=90°AC=AB,点D是以AB为直径的圆o上一点,直线CD与AB的延长线交于E,CD=AB

1、连接OD、OC,对三角形OAC和三角形ODC,三对应边相等,所以全等,得∠ODC=∠OAC=90°,所以CD是圆O切线2、OC与AD的交点为G依题意可知CG=AD=2BDOC平行BD,DF:FG=

=如图,已知△abc的三个顶点在以o为圆心的圆上,ad是△abc的高,ae是以o为圆心的圆上直径,求证ab×ac=ad×

连接BE∵AE为圆O直径∴∠ABE=90°∵AD为△ABC的高∴∠ADC=90°在△ABE与△ADC中,∠ABE=∠ADC,∠E=∠C(同弧所对的圆周角相等)∴△ABE∽△ADC∴AB/AD=AE/A

(2014•宜昌三模)如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=

(Ⅰ)证明:∵E,F分别是PB,PC的中点,∴BC∥EF,又EF⊂平面EFA,BC不包含于平面EFA,∴BC∥面EFA,又BC⊂面ABC,面EFA∩面ABC=l,∴BC∥l,又BC⊥AC,面PAC∩面

1.如下图,P.C是以AB为直径的半圆O上的两点,AB=10,弧PC的长=5/2π,连接PB交AC于M,求证:MC=BC

1.AB是直径,故∠C=90°弧PC的长是1/4的圆周长,故其对应圆周角∠MBC=45°故△MBC为等腰直角三角形,故MC=BC2.最短9.6cm,最长12cm3.判别式△=(m+8)^2-8(m+5