如图,AB为圆O的直径,CE,若AE=6,圆O的半径是5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:09:17
如图,AB为圆O的直径,CE,若AE=6,圆O的半径是5
如图,AB是圆O的直径,C是弧BD的中点,CE垂直AB,垂足为E,BD交CE于F,若CD为六 AC为8 求圆直径

连接BC.弧BC=弧CD,则BC=CD=6.AB为直径,则∠ACB=90°,AB=√(AC^2+BC^2)=10.由面积关系可知:AC*BC=AB*CE,8*6=10*CE,CE=24/5.

如图,AB为圆O直径,弧CD等于弧CB,CE垂直AD于E,连BE,1.求证:CE为圆O切线2

证明:连结OC,BC,因为CE垂直于AD于E,AB是圆O的直径,所以角CED=角ACB=90度,所以角EAC+角ECA=角BAC+角ABC=90度,因为弧CD=弧CB,所以角EAC=角BAC,所以角E

如图,DE是圆O的直径,弦AB⊥CD垂足为C,若AB=6,CE=1则OC=() CD=()

∵DE是⊙O的直径∴AC=BC=1/2AB根据相交弦定理AC*BC=CE*CDCD=AC*BC/CE=3*3/1=9AB=CD+CE=9+1=10OC=1/2AB-CE=5-1=4有没办法证明DE与C

,如图,已知AB为圆O的直径,CE切圆O于点C,CD⊥AB于点D,求证CB平分∠ECD

连结AC,CE切圆O于点C=>∠ECB=∠A,AB为圆O的直径=>∠ACB=90=>∠A+∠B=90∠B+DCB=90=>∠A=∠DCB,∴∠ECB=∠DCB =&g

如图,AB是圆O的直径,CE是切线,切点为C,BE垂直CE于E,叫圆O于D,求证AC=CD

证明:连接OC,OD∵CE是切线∴OC⊥CE∵BE⊥CE∴OC//BE∴∠AOC=∠ABD∵∠AOD=2∠ABD【同弧所对的圆心角等于2倍的圆周角】∴∠AOC=∠COD∴AC=CD【相等圆心角所对的弦

如图,AB是圆O的直径,C是弧BD的中点,CE垂直AB,垂足为E,BD交CE于点F

连接OD,∵C是弧BD的中点,∴∠COD=∠COB,∵∠A=∠1/2∠DOB,∴∠A=∠COB,∴OC‖AD

如图.AB是半圆O的直径,CD垂直AB于D.CE是切线.E为切点

题目不完整,我估计F是CD与BE的交点连接EO,则CE垂直于EO,则角CEF+角OEF=90度,又因为AB为直径,故角AEB=90度,即角AEO+角OEF=90度,故角AEO=角CEFCE为切线,则角

如图;AB为圆O的直径,C为圆O上一点,连接AC,BC,E为圆O上一点,且BC=CE,点F在BE上,CF⊥AB于D.1求

题目条件应该打错,是BE=CE(1)证明:AB是直径,∴∠ACB=90°∠A+∠ABC=90°∵CD⊥AB,∴∠BCD+∠ABC=90°∴∠A=∠BCD又∵∠A和∠E所对都是BC弧,∠A=∠E∴∠BC

如图,圆O中,AB,CD为直径,弦CE平行于AB,求证弧AE=弧AD

证明:连接AC  ∵∠AOD=∠BOC  ∴弧AD=弧BC  ∵弦CE‖AB  ∴∠BAC=∠ACE  ∴弧BC=弧AE  ∴弧AE=弧AD

如图,AB为圆O的直径,CD为圆O的弦,且CD⊥AB,垂足为H,∠OCD的平分线CE交圆O于点E,连接OE,求证:E为A

∵AB为直径∴∠ACB=90°∵CD⊥AB∴∠ACH+∠CAB=90°∠ABC+∠CAB=90°∴∠ACH=∠ABC∵O为圆心,AB为直径∴OB=OC=OA∴∠OCB=∠OBC=∠ABC∵CE为∠OC

如图,AB为⊙O的直径,CE⊥AD于E,连BE,CD=CB.

(1)证明:连接OC、BD,它们相交于F点,如图,∵CD=CB,∴OC⊥BD,FD=FB∵AB为直径,∴∠ADB=90°,∴AE∥OC,∵CE⊥AD,∴OC⊥CE,又∵OC是⊙O的半径,∴CE为⊙O的

如图,AB为圆O的直径弦CD垂直于AB,垂足为点E,CF垂直于AF,且CF=CE

(1)证明:连接OC.∵CE⊥AB,CF⊥AF,CE=CF,∴AC平分∠BAF,即∠BAF=2∠BAC.∵∠BOC=2∠BAC,∴∠BOC=∠BAF.∴OC∥AF.∴CF⊥OC.∴CF是⊙O的切线.

如图,AB是圆O的直径,C是圆O上的一点,直线CE与AB的延长线相交于点E,AD⊥CE,垂足为D,AD

第1问应该是求证CE是圆O切线,问者应该证明了.连接BF,交OC于M∵AB是圆O的直径,AB=10∴∠AFB=90°,OB=OC=5∵AD⊥CE,CE是圆O切线∴BF∥CE,BF⊥OC∴BM=FM,四

如图,AB为圆O的直径,点C为弧AB的中点,弦CE交AB于点F,D为AB延长线上一点,

连接OC.AB为直径,C为弧AB的中点,则:OC⊥AB,OC=AO=OB=3;BF=OB-OF=2.设BD=X,则DE=DF=2+X.DE为圆的切线,则:DE²=BD*AD,(2+X)

已知:如图,AB、CD为圆O的直径,弦CE平行AB .DE交AB于F,求证,EF=DF

证明:∵CD是⊙O的直径∴∠CED=90°(直径所对的圆周角是直角)∵CE//AB∴∠AFD=∠CED=90°∵AB是⊙O的直径∴EF=DF(垂径定理:垂直于弦的直径平分弦及弦所对的两条弧)

已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O的直径,BD切半圆O/于点D,CE⊥AB交半圆O于点F.

1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方

已知,在圆O中,直径AB⊥弦CD,E为垂足,AE=4,CE=6,求圆O的半径,如图

连接CO,设半径CO=R.则OE=OA-AE=R-4.OE^2+CE^2=CO^2,即(R-4)^2+36=R^2,R=6.5

如图,CD为圆O的直径,弦AB垂直CD于点E,CE=1,AB=10,求CD的长

∵CD是⊙O的直径,AB⊥CD∴AE=BE∵AB=10∴AE=5设OA=R∴OE=R-1根据勾股定理:R²=5²+(R-1)²解得R=13∴CD=2R=26

如图,AB、CD是⊙O的直径,弦CE∥AB,弧CE的度数为40°,求∠AOC的度数.

连接OE,如图,∵弧CE的度数为40°,∴∠COE=40°,∵OC=OE,∴∠OCE=∠OEC,∴∠OCE=(180°-40°)÷2=70°,∵弦CE∥AB,∴∠AOC=∠OCE=70°.