如图,AB是○o的直径,点E为弧AC的中点,AC.BE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:09:47
如图,AB是○o的直径,点E为弧AC的中点,AC.BE
如图,AB为⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于点E,以知AB=2DE,∠E=18°,求∠AOC的度数

O为圆心,AB=2DE,∴OA=OB=OC=OD=DE,∵∠E=18°,∴∠DOE=18°(△DOE是等腰三角形),∠ODC=2∠E=36°=∠OCD,∠COD=180°-2∠ODC=180°-72°

如图,AB为圆O的直径,CD⊥AB于点E,叫圆O与点D,OF⊥AC于点F.

1.连接OCCD⊥AB于点E,∴BC=BD(垂径定理)∴∠BCD=∠D=30°(等弦所对的圆周角相等)又因∠BEC=90°,BC=1∴BE=BC/2=1/2CE=√(BC²-BE²

如图,AB是⊙O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O于点D,连接CD交AB于点E.

证明:(1)连接OC、OD,∵C是半圆ACB的中点∴∠COA=∠COB∵∠COA+∠COB=180°∴∠COA=∠COB=90°∴OD⊥PD,OC⊥AB.∴∠PDE=90°-∠ODE,∠PED=∠CE

如图,AB为圆O的直径,AB平分∠BAC交圆O于点D,DE⊥AC交AC的延长线于点E,FB是圆O的切线交AD的延长线于点

1.连结OD,角EDA=角AFB角AFB+角FAB=角EDA+角ADO=90度,DE垂直于圆ODE是圆O的切线;2.连接BD,角ADB=90度=角E,由相似,由勾股定理求AE=9,再由相似求BF=10

如图,已知AB,AC分别是圆O的直径和弦,D为劣弧AC上一点,DE垂直于AB于点H,交圆O于点E,交AC于点F,P为ED

逆推结果,角E是PEC吧?这题实际是让你证明PCO=90已知PCD=EA+DBA+E=90又有DCO=DCA+ACO=DCA+A=A+DBA所以E+DCO=90即PCD+DCO=PCO=90所以PC为

如图,AB是圆O的直径,C是弧BD的中点,CE垂直AB,垂足为E,BD交CE于点F

连接OD,∵C是弧BD的中点,∴∠COD=∠COB,∵∠A=∠1/2∠DOB,∴∠A=∠COB,∴OC‖AD

如图、已知AB为圆O的直径、CD是弦、且AB垂直CD于点E,连接AC、OC、BC.

1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D

如图,AB为圆O的直径,CD是圆O的弦,AB,CD的延长线交于点E,已知AB=2DE,∠E=18°,求∠AOC的度数.

连接OD,则OD=OC=DE∴角E=∠DOE=18°所以,∠ODC=∠OCD=36°(∠ODC是外角)∴∠AOC=72°(同上)

已知:如图,MN是○o的弦,AB是○o的直径,AB⊥MN,垂足为点P,半径OC、OD分别交MN于点E、F,且OE=OF

证明:△OEP全等于△OFPPE=PF由垂径定理得MP=NP∴ME=NF由垂径定理得弧AM=弧AN△OEP全等于△OFP∴∠COA=∠DOA∴弧AC=弧AD∴弧MC=弧ND

已知 如图,AB是圆O一条弦,点C为弧AB中点,CD是圆O的直径,过C点的直线L交AB所在直线于点E,交圆O于点F.

∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE

已知:如图,AB为圆O的直径,点E是OA上任意一点,过点E作弦CD⊥AB,点F是BC弧上一点,链接AF交CE与点H,联结

(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC

已知,如图,AB,CD是○O的直径,且AB⊥CD,E是OC的中点,过点E作FG∥AB,交○O于点F,G.

你连接OF,OG.三角形EOF里面,EFO是直角,OE=1/2OF,所以FOE=60°,类似GOE=60°,所以弧FCG=120°.而弧AF=90°-FOE=30°所以弧FCG=4弧AF

如图,AB是圆O的直径,CD为弦,CD⊥AB于点E

∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10

如图,AB为⊙O的直径,弦CD⊥AB于点E.

(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,

如图,AB为圆o的直径,半径OC⊥AB,点E.F是弧AC的三等分点,DE‖AB.

(1)连接OE、OF,∠AOE=∠EOF=∠FOC,(同弧所对的圆心角相等)在△OED中,∠EOD=60°,∠EDO=90°,∵∠OED=30°.在直角直角形中,30°所对的直角边=斜边的一半.∵OD

如图,AB为圆O的直径,半径OC垂直于AB,点E、F是弧AB的三等份点,DE平行AB,(1)求证:点D是OC的中点;(2

点E,F是弧AB的三等分点,所以有∠EOD=60°,又ED‖AB,CO⊥AB,所以∠EDO=90°,所以OD=1/2OE=1/2OC,所以D为OC中点.(2)最小值为√2OA

如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.

(1)证明:∵AB为⊙O的直径,∴∠ACB=90°(1分)∵CD⊥AB,∴∠DEB=90°,∴∠ACB=∠DEB(2分)又∵∠A=∠D,∴△ACB∽△DEB.(3分)(2)连接OC,则OC=OA,(4

如图,AB是圆o的弦,CD是圆o的直径,CD⊥AD,垂直点为点M,EF是圆o的切线,切点为E,切交

题目CD⊥AD好像有文字错误,应该是CD⊥AB,请核实(1)连接OE,则OE⊥EF,

已知如图,MN是圆O的弦,AB是圆O的直径,AB垂直于MN,垂足为点P,半径OC,OD分别交MN于点E,F,且OE等于O

∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直

如图,AB是圆O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切圆O于点D,连接CD交AB于点E 求证:P

(1)连接OC∵PD切圆O于点D∴OD⊥PD∵C为半圆ABC的中点∴OC⊥AB∵OC=OD∴∠OCE=∠ODE∵∠OCE+∠OEC=90°∠ODE+∠PDE=90°∴∠OEC=∠PDE又∠OEC=∠D