如图,AB是圆O的直径,DC切于圆O于C,AD垂直DE,AS交于圆O于E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:00:29
如图,AB是圆O的直径,DC切于圆O于C,AD垂直DE,AS交于圆O于E
如图,已知AB是圆O的直径,DA垂直AB于A,且DA平行BC∠COD=90° 求证DC是圆O切线

证明:延长DO交CB的延长线于点E,过O作OF⊥DC于F∵AD切圆O于A∴∠DAO=90∵AD∥BC∴∠DAO=∠EBO=90,∠E=∠DAO∵OA=OB∴△AOD≌△BOE(AAS)∴OD=OE∵∠

如图AE是圆O直径D是圆O一点连接AD并延长使AD=DC,连接CE交圆O于点B,连接AB,过点E的直线与AC的延长线

证明(1):∵AD=DC,DE=DE,∠ADE=∠CDE=90度,∴△ADE≌△CDE(SAS),∴AE=CE.∴∠2=∠3,∴∠F=∠2=∠3.又∵∠2+∠3+∠4=90=∠1+∠2+∠F,∴∠1=

如图 AB是圆心O的直径 AB=10 DC切圆心O于点C AD垂直DC 垂足为D AD交圆心O于点E

因为,DC切圆心O于点C,所以OC垂直DC,又AD垂直DC.所以OC平行于AD.根据平行线的性质,所以∠BAD=∠BOC.又根据圆周角定理:同弧所对圆周角是圆心角的一半.所以2∠CAB=∠BOC=∠B

如图,AB是圆心o的直径,BC切圆o于点B,AC交圆o于点D.若AD=3,DC=2,求圆o的半径

连接BD,则∠BD=90°(半圆上的圆周角是直角)又:BC切圆于B,∴∠ABC=90°∴BD是直角三角形ABC斜边上的高∴BD^2=AD*DC=3*2=6AB^2=AD^2+BD^2=3^2+6=15

如图,AB是⊙O的直径,弦CD⊥AB于点E,G是弧AC上任意一点.延长AG,与DC

∠AGD=∠ADC、∠FGC=∠ADC证明:连接AC∵AB是圆O的直径,弦CD⊥AB∴AB垂直平分CD∴AC=AD∴∠ACD=∠ADC∵∠AGD、∠ACD所对应圆弧都为劣弧AD∴∠AGD=∠ACD∴∠

如图,AB是圆O的直径,BC切圆O于点B,AC交圆O与点D.若AD=3,DC=2,则圆O的半径为

设BD=x则2/x=x/3所以x=√6所以直径d=√[3²+(6)²]=15故半径r=√15/2楼上错了^^

几何题“圆”1、如图,AC是⊙O的直径,AB、DC是⊙O的两条弦,且AB//DC,如果∠BAC=35°,求∠AOD的度数

1.∵AB//DC∴∠ACD=∠BAC=35∠AOD=2∠ACD=70(同弧所对的圆心角是圆周角的两倍)2.∵BC三等分弧BC∴∠BOC=(1/3)∠AOD∴∠AOD=138∠AED=(1/2)∠AO

如图,已知AB是圆O的直径,AB=10,点C,D在圆O上,DC平分∠ACB,∠EAC=∠D.

这里同初三滴~刚考完期末1.证明:设DC与AB的交点为F连接BD,由题可知:∠BDA=∠BCA=90°∵∠BCD=∠ACD=45°∴BD=AD,∠DBA=∠DAB=45°由∠DBA=∠ACD=45°∠

AB是圆O的直径AB=6角CAD=30度,求弦长DC

连接OC,OD∵∠CAD=30°∴∠COD=30°∵OC=OD∴△OCD是等边三角形∴CD=1/2AB=3

如图,AB是圆O的直径,弦CD⊥AB,M是圆O上一点,延长AM、DC相交于N.

证明:连接AD、AC∵AB是圆O的直径,弦CD⊥AB∴AB垂直平分CD∴AC=AD∴∠ACD=∠ADC∵∠ACD、∠AMD所对应圆弧都是劣弧AD∴∠AMD=∠ADC∵∠NMC是圆内接四边形ADCM的外

如图AB是圆O的直径

解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r

如图,⊙O是△ABC的外接圆,AB是⊙O的直径,过点C的切线与AB的延长线相交于点D,AE⊥DC交DC于点E.

(1)证明:如图,连接OC,∵DE是⊙O的切线,∴OC⊥DE.又∵AE⊥DE,∴OC∥AE.∴∠EAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠EAC=∠OAC.∴AC是∠EAB的平分线.

如图已知AB是圆O的直径,C为圆O上一点,过点C作圆O的切线CD,若AC平分角DAB,求证:AD垂直DC

证明:在圆o中连接CO∵AO=CO∴∠OAC=∠OCA∵AC平分∠DAC∴∠DAC=∠OAC∴∠OCA=∠DAC∴AD∥OC∵CD为圆O的切线∴OC⊥DC∴AD⊥DC

如图,已知AB是圆O的直径,BC是圆O的切线,切点为B.OC平行于弦AD.求证:DC是圆O的切线.

OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则

如图,已知AB是圆O的直径,点D在AB的延长线上,且AC=CD,点C在圆O上,角CAB= 30度,求证:DC是圆O的切线

∵AC=CD∴∠CAB=∠CDB=30°连接OC∵OA=OC∴∠CAB=∠OCA=30°∴∠COD=60°∴∠OCD=90°C在圆O上∴DC是圆O的切线

如图 AB是圆o的直径,BD是圆O的弦,延长BD到点C,使DC=BD,连接AC交圆O于点F

1)连AD,则∠ADB=90,即:AD⊥BC而BD=CD即:AD在三角形BAC中既是高又是中线所以,BAC是等腰三角形AB=AC2)显然,∠B=∠C

如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于C,若∠A=25°,则∠D=______°.

如右图所示,连接BC,∵AB是直径,∴∠BCA=90°,又∵∠A=25°,∴∠CBA=90°-25°=65°,∵DC是切线,∴∠BCD=∠A=25°,∴∠D=∠CBA-∠BCD=65°-25°=40°

已知,如图,AD是圆心O的直径,AB,AC是圆心的弦,弧BD等于弧DC,OE,OF分别表示AB,AC的弦心距

是求证:(1)AB=AC(2)OE=OF再问:嗯然后呢?再答:其实我也在找这题再问:呃好吧