如图,AB是圆O的直径,DC切于圆O于C,AD垂直DE,AS交于圆O于E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:00:29
证明:延长DO交CB的延长线于点E,过O作OF⊥DC于F∵AD切圆O于A∴∠DAO=90∵AD∥BC∴∠DAO=∠EBO=90,∠E=∠DAO∵OA=OB∴△AOD≌△BOE(AAS)∴OD=OE∵∠
证明(1):∵AD=DC,DE=DE,∠ADE=∠CDE=90度,∴△ADE≌△CDE(SAS),∴AE=CE.∴∠2=∠3,∴∠F=∠2=∠3.又∵∠2+∠3+∠4=90=∠1+∠2+∠F,∴∠1=
因为,DC切圆心O于点C,所以OC垂直DC,又AD垂直DC.所以OC平行于AD.根据平行线的性质,所以∠BAD=∠BOC.又根据圆周角定理:同弧所对圆周角是圆心角的一半.所以2∠CAB=∠BOC=∠B
连接BD,则∠BD=90°(半圆上的圆周角是直角)又:BC切圆于B,∴∠ABC=90°∴BD是直角三角形ABC斜边上的高∴BD^2=AD*DC=3*2=6AB^2=AD^2+BD^2=3^2+6=15
/>∵AB∥CD∴∠BAC=∠C=35°∴∠AOD=2∠C=70°
∠AGD=∠ADC、∠FGC=∠ADC证明:连接AC∵AB是圆O的直径,弦CD⊥AB∴AB垂直平分CD∴AC=AD∴∠ACD=∠ADC∵∠AGD、∠ACD所对应圆弧都为劣弧AD∴∠AGD=∠ACD∴∠
设BD=x则2/x=x/3所以x=√6所以直径d=√[3²+(6)²]=15故半径r=√15/2楼上错了^^
1.∵AB//DC∴∠ACD=∠BAC=35∠AOD=2∠ACD=70(同弧所对的圆心角是圆周角的两倍)2.∵BC三等分弧BC∴∠BOC=(1/3)∠AOD∴∠AOD=138∠AED=(1/2)∠AO
这里同初三滴~刚考完期末1.证明:设DC与AB的交点为F连接BD,由题可知:∠BDA=∠BCA=90°∵∠BCD=∠ACD=45°∴BD=AD,∠DBA=∠DAB=45°由∠DBA=∠ACD=45°∠
连接OC,OD∵∠CAD=30°∴∠COD=30°∵OC=OD∴△OCD是等边三角形∴CD=1/2AB=3
证明:连接AD、AC∵AB是圆O的直径,弦CD⊥AB∴AB垂直平分CD∴AC=AD∴∠ACD=∠ADC∵∠ACD、∠AMD所对应圆弧都是劣弧AD∴∠AMD=∠ADC∵∠NMC是圆内接四边形ADCM的外
解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r
(1)证明:如图,连接OC,∵DE是⊙O的切线,∴OC⊥DE.又∵AE⊥DE,∴OC∥AE.∴∠EAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠EAC=∠OAC.∴AC是∠EAB的平分线.
证明:在圆o中连接CO∵AO=CO∴∠OAC=∠OCA∵AC平分∠DAC∴∠DAC=∠OAC∴∠OCA=∠DAC∴AD∥OC∵CD为圆O的切线∴OC⊥DC∴AD⊥DC
OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则
∵AC=CD∴∠CAB=∠CDB=30°连接OC∵OA=OC∴∠CAB=∠OCA=30°∴∠COD=60°∴∠OCD=90°C在圆O上∴DC是圆O的切线
1)连AD,则∠ADB=90,即:AD⊥BC而BD=CD即:AD在三角形BAC中既是高又是中线所以,BAC是等腰三角形AB=AC2)显然,∠B=∠C
如右图所示,连接BC,∵AB是直径,∴∠BCA=90°,又∵∠A=25°,∴∠CBA=90°-25°=65°,∵DC是切线,∴∠BCD=∠A=25°,∴∠D=∠CBA-∠BCD=65°-25°=40°
是求证:(1)AB=AC(2)OE=OF再问:嗯然后呢?再答:其实我也在找这题再问:呃好吧