如图,AB是圆的直径∠C等于15,求∠BAD的读书

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:14:16
如图,AB是圆的直径∠C等于15,求∠BAD的读书
如图,已知AB是⊙O的直径,∠AOE=60°,C是AB延长线上一点,CE交⊙O于点D,且CD=OB,则∠C等于

连接OD∵CD=OB,OB=OD∴DO=DC∴∠DOC=∠C∴∠ODE=2∠C∵∠AOE=∠E+∠C,∠E=∠ODE∴∠AOE=3∠C∵∠AOE=60°∴∠C=20°

如图.AB是圆O的直径,弦CD垂直于AB,角C等于30°,CD=23,则扇形阴影的面积

连接CO∵CD为⊥于直径的弦∴CE=DE∵∠C=30°∴∠A=60°∵OA=OC∴△ACO为等边三角形∴AC=AO=OD∵∠AEC=∠DEO=90°∴△ACE≌△ODE(HL)∴S△ACE=S△ODE

如图,AB是半圆O 的直径,点c是圆O上一点,连接ac,ab

的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°

如图ab是圆o的直径c是弧bd的中点

木分啊.[1].连接AC、OC、BC弧BC=弧CD,所以角DAC=角DAC,又因为角BAC=角OCA所以角DAC=角ACO,所以AD平行OC,所以角DAB=角COB三角形ADB与三角形OEC皆为直角三

如图 AB是圆O的直径 C是弧AD的中点…

证明:∵C是弧AD的中点∴弧AC=弧CD∴∠ABC=∠CBD(等弧对等角)∵AB是⊙O的直径∴∠ADB=90°则∠EFC=∠BFD=90°-∠CBD∵CM⊥AB∴∠CHB=90°则∠ECF=90°-∠

如图 已知AB是圆O的直径,C为圆周上一点,求证:∠ACB=90°

连结OC,∵OA,OB,OC都是圆的半径,∴△OAC和△OCB为等腰三角形;等腰△两底角相等,故有∠OAC=∠OCA,∠OBC=∠OCB;又∵三角形内角和为180°,∴∠ACB=∠OCA+∠OCB=9

如图,AB是圆O的直径,C、D是圆O上的两点,且AC等于CD.求证:OC平行BD

1)证明:∵AC=CD\x0d∴弧AC与弧CD相等,\x0d∴角ABC=角CBD又∵OC=OB∴角OBC=角OCB\x0d∴角OCB=角CBD∴OC//BD(2)∵OC//BD不妨设平行线OC与BD间

如图,已知AB是圆O的直径,角AOE等于60度,C是AB延长线上一点,CE交圆O于点D,且CD等于OB,则角C等于多少度

aoe是等边三角形aec直角oed=ode=30cd=od=ob角C=15再问:C是20度,我不知道过程再答:是。连AEBEAEB=90ABE=30=BEC+BCE=BEC+BOD=BEC+2BEC=

如图,已知,AB是圆O的直径,角AOE=60°,C是AB延长线上一点,CE交圆O于点D,且CD=OB,且∠C等于多少度?

解AB是圆O的直径E﹐D是圆O上的两点所以OA=OE=OD=OB所以∠AOE=60°所以AE=OE=OA所以∠EOA=60°因为CD=OB所以∠C=∠DOC又OD=OE所以∠OED=∠ODE所以∠OD

如图,AB是圆O的直径,C是弧BD的中点

(1)证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF(2)连接OC,交BD于点M∵C是弧BD的中点∴O

如图:AB是圆O的直径,C是圆O上一点,过点C的切线与AB延长线交于点D,CE//AB交圆O于点,求证:(1)∠DCB=

(1)连接OC,因为C是圆O上一点,CD是圆O的切线,所以∠DCO=90度,∠ACB=90度,所以∠DCB=∠DCO-∠OCB=∠90度-∠OCB,∠CAB=180度-∠ACB-∠CBA=∠90度-∠

如图,AB是⊙O的直径,CD是⊙O的切线,C为切点,∠B=25゜,则∠D等于______.

如右图,连接OC,∵AB是⊙O的直径,CD是⊙O的切线,∴CD⊥OC,∵∠B=25°,∴∠AOC=50°,∴∠D=40°.故答案为40°.

如图,ab与圆o相切与点c,oa等于ob,圆o的直径为8厘米,ab等于10厘米,求oa的长.

因为:圆O的直径为8所以:OC=4因为:OA等于OB,AB与圆O相切与点C所以:三角形OAB是一个等边三角形,且C为AB中点,OC垂直于AB所以:AC=BC=5所以:OA=根号(OC的平方+AC的平方

如图 AB是圆O的直径,弦AD,BC相交于P那么CD:AB等于( ) A.sin∠BPD B.cos∠BPD C.tan

本题的答案是B. 说明如下:∵A、B、C、D共圆,∴∠A=∠C、∠B=∠D,∴△CDP∽△ABP,∴CD/AB=DP/BP.∵AB是直径,∵∠BDP=90°,∴cos∠BPD=DP/BP.由CD/AB

如图,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于

连接BC∵CE是圆切线∴∠ECB=∠CDB=20°(弦切角=所夹弧上的圆周角)∵AB是直径∴∠ACD=90°(半圆上圆周角是直角)∵∠CDB=∠CAB=20°(同弧上圆周角相等)∴∠CBA=90°-∠

如图AB是半圆O的直径 C是半圆周上一动点 若∠CAB等于30°BC等于6 若AB等于2R 则C

那该题相当于求当C在何处时三角形面积最大.当角CAB为30度时,BC=6,画辅助线C垂线至AB,垂足为D.可得角BCD=角CAB=30度. 可得BD=3,CD=6cos30.可得AD=CD*

如图已知AB是圆O的直径C是圆O上一点CD⊥AB求证1∠ACD=∠F 2AC

1、连接BC,则∠ACB=90°,∠ABC=∠F,∵∠ACD+∠CAD=90°,∠CAD+∠ABC=90°,∴∠ACD=∠ABC.∴∠ACD=∠F.2、由(1)得出的∠ACD=∠F,又∵∠CAG=∠F