如图,b为三角形acd 所在平面外一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:08:25
∵PA⊥平面ABC∴PA⊥BC又BC⊥AB∴BC⊥平面PAB∴BC⊥PB
设:四面体A-BCD棱长为a连接DF,做DF中点G,连接GE∵GE‖AF∴AF,CE所成角就是GE,CE所成角GE=1/2*AF=√3/4*aCE=√3/2*aCG==√(GF^2+CF^2)=√7/
选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,
过P在平面PAD内做直线PM平行于AD则PM平行于AD平行于BC因此PM和BC在同一面内.PM在面PAD内,又在面PBC内,因此PM就是平面PAD和平面PBC的交线.PM=m平行于BC
(1)取AC中点E连接BEDEM在BE上N在DE上MN是△BDE中位线(2)MN=8再问:能不能具体点我求过程再答:取AC中点E连接BEDEMN重心(三条中线交点)所以M在BE上N在DE上且EM=2M
取BD,CD,AD,连结AE,BG,AF,CG,(三角形ABD重心为M)所以AE,BG交于M,同理CG,AF交于N,取D,G中点H,连结EH,FH,EF因为E,H分别为BD,GD中点所以EH//BG所
(1)、∵平面ABD⊥平面ACD,BD⊥AD,∴BD⊥平面ACD,∵BD∈平面BDC,∴平面ACD⊥平面BDC.(2)、∵N是BC的中点,AB=AC,∴AN⊥BC,(等腰三角形三线合一),同理,BD=
我给你画了一个,BD边是虚线没画
解法一:取BD,CD,AD,连结AE,BG,AF,CG,(三角形ABD重心为M)所以AE,BG交于M,同理CG,AF交于N,取D,G中点H,连结EH,FH,EF因为E,H分别为BD,GD中点所以EH/
A是△BCD所在平面外一点,M、N分别是△ABC和△ACD的重心,若BD=6,则MN多少? 如图:PQ为△BCD的中位线--->PQ∥BD且PQ=BD/2=3 AM:AP=A
(1)因BE⊥AE,CB⊥AE,故AE⊥面CBE,故AE⊥EC.(2)因CD∥AB,故CD∥面ABEF;CD与EF共面,故EF为两个面的交线,故AB∥EF.(3)S△AEF=1/2×EF×AH=1/2
(1)证明:∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,BC⊥AB,BC⊂平面ABCD∴BC⊥平面ABE∵AE⊂平面ABE,∴BC⊥AE∵E在以AB为直径的半圆上,∴AE⊥BE∵BE∩
(1)证明:∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,BC⊥AB,BC⊂平面ABCD∴BC⊥平面ABE∵AE⊂平面ABE,∴BC⊥AE∵E在以AB为直径的半圆上,∴AE⊥BE∵BE∩
题目没有讲是在RT△ABC中,因此,不能因∠A=2∠B,得,∠A+∠B=3∠B=90°,所以∠B=30°,∠A=60°…….应该是先证明△ABC是RT△ABC,才有∠B=30°,∠A=60°之说.试证
先说一下思路:1、先说一下直线和平面平行的判定定理:*如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.2、连接AM、AN并延长,分别交BC、CD于点E、F.3、△AMN∽△A
1、因为重心是中线的三等分点,BG和AF都是它中线的三分之二,按三角形的相似性可知道AB//FG且FG=(1/3)AB,同理可知道AB、BC、AC分别平行于FG、EF、EG &n
证明:∵AB=AC,E是BC的中点,∴BC⊥AE, 在△ABD和△ACD中,∠ABD=∠ACD=90°,AB=AC,AD为公共边,∴△ABD≌△ACD,∴BD=DC.又∵E是BC
(1)证明:取CE的中点G,连FG、BG.∵F为CD的中点,∴GF∥DE且GF=12DE.∵AB⊥平面ACD,DE⊥平面ACD,∴AB∥DE,∴GF∥AB.又AB=12DE,∴GF=AB.∴四边形GF
先连接AC交BD于O,再连接MO,根据中位线定理可得到PA∥MO,进而可根据线面平行的判定定理可证.连接AC交BD于O,再连接MO∴PA∥MOPA⊈平面MBD,MO⊆平面MBD
证明:延长BM交AC于E,延长BN交AD于F,连接EFM,N,分别为三角形ABC,三角形ABD的重心∴ BM:ME=BN:NF=2:1∴ MN//EF ∵ MN