如图,CD是○O的直径,以点D为圆心,DO长为半径作弧,交○O于点A,B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:21:47
如图,CD是○O的直径,以点D为圆心,DO长为半径作弧,交○O于点A,B
如图,AB为圆O的直径,CD垂直于点D,OF垂直于AC于点F

一:①:BC=BD②:BC=根号(AB平方-AC平方)③:BC=根号(CE平方+BE平方)二连结CO∵∠D=30°又∵∠COB与∠D同弧∴∠COB=2∠D=30º×2=60º∴∠C

如图 ab是圆o的直径,点C是BA延长线上一点,CD切圆O于D点,弦DE平行CB,Q是AB上一动点,CA=1,CD是圆O

当Q从A向B运动的过程中,图中阴影部分的面积不发生变化 连结0D、OE.∵DE‖CB,∴S△QDE=S△ODE(同底等高)∴S阴影=S扇形ODE设圆的半径为r,由切割线定理,CD&s

如图AB是圆O的直径,BC是圆O的弦,OD垂直CB于点E,交弧BC于点D,连接CD.

拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明

如图,四边形ABCD是平行四边形,以AB为直径的圆o经过点D,E是圆o上的一点,且∠AED=40° 求证CD是圆o的切线

连结OD因为∠AED=45°所以∠DOA=90°又因为ABCD为平行四边形所以∠CDO=90°即CD是圆O的切线

如图,AB是⊙O的直径,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D.求证:

证明:(1)∵CD是⊙O的切线,∴∠OCD=90°,即∠ACD+∠ACO=90°.①(2分)∵OC=OA,∴∠ACO=∠CAO,∴∠AOC=180°-2∠ACO,即∠AOC+2∠ACO=180°,两边

如图,AB是⊙O的直径,过点A作AC交⊙O于点D,且AD=CD,连接BC,过点D作⊙O的切线交BC于点E.

(1)结论:DE⊥BC.理由:连接OD,∵AB是⊙O的直径,∴OA=OB.∵AD=CD,∴DO∥BC.又∵DE是⊙O的切线,∴DE⊥DO,即∠ODE=90°.∴DE⊥BC.(2)连接BD,∵AB是圆的

如图,AB是圆O的直径,CB、CD分别与圆O相切于点B、D,求证AD平行OC

是OP吧?连接OP,OD,∵PD=PB,OB=OD,OP是公共边∴△PDO≌△PBO∴∠POD=∠POB=∠BOD/2∵∠A=∠BOD/2∴∠A=∠POB∴AD‖OP

如图,AB是圆O的直径,点D在圆O上,∠DAB=45°,BC平行AD,CD平行AB

(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)分析:(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可.(2)

如图,△ABC中,AC=6,BC=4,以AB为直径的⊙O经过点C,CD平分∠ACB交⊙O于点D,AE⊥CD于点E,则OE

延长AE交CB延长线于点F∵CD平分∠ACB,AE⊥CD∴AE=EF,CF=AC=6(三线合一)∴BF=CF-BC=6-4=2∵OA=OB∴OE是三角形AFB的中位线∴OE=BF/2=1数学辅导团解答

如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、O

1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈

已知 如图 AB是⊙O的直径 点C、D为圆上两点,且弧CD=弧CD,CF⊥AV于点F

1.弧CB=弧CD,CB=CD∠CAE=∠CAF,CF⊥AB于点F,∠CFA=90°,CE⊥AD的延长线于点E,∠CEA=90°,∠ACE=90°-∠CAE,∠ACF=90°-∠CAF∠ACE=∠AC

如图,AB是圆O的直径,AE交圆O于点C,CD切圆O于点C,交BE于点D,且D是BE的中点,BE是圆O的切线吗?为什么?

BE是⊙O的切线.[证明]∵AB是⊙O的直径,∴AC⊥BC,∴BC⊥CE,而D是BE的中点,∴CD=BD.∵OC=OB、OD=OD、CD=BD,∴△OCD≌△OCB,∴∠OCD=∠OBD.∵CD切⊙O

如图三角形ABC的三个顶点在⊙上,AE是圆O的直径,CD⊥AB于点D,证明AC*BC=AE*CD.

连接BC∠ACE=90°sinAEC=AC/AE∠AEC=∠ABCsinABC=CD/BC=sinAEC=AC/AECD/BC=AC/AEAC×BC=AE×CD

如图,AB是圆O的直径,CD⊥AB于点E,交圆O于点D,OF⊥AC于点F.

这个很简单的.我想你要自己学会思考问题.这是一种能力,因为日后的生活中,很问题都自己去思考.到了高中,几何和函数一体的.所以你得自己去弄明白.(1):第一条:∵AB是直径,∴∠ACB=90'根据勾股定

如图,已知AC、AB、BC是⊙O的弦,CE是⊙O的直径,CD⊥AB于点D.

(1)证明:∵CE是⊙O的直径,∴∠CAE=90°,∴∠BAC+∠BAE=90°,∵CD⊥AB,∴∠BAC+∠ACD=90°,∴∠BAE=∠ACD,∵∠BAE=∠BCE,∴∠ACD=∠BCE;(2)∵

如图,△ABC中,以BC为直径的⊙O交AB于点D,CA是⊙O的切线,AE平分∠BAC交BC于点E,交CD于点F.

(1)证明:∵BC是直径,∴∠BDC=90°,∴∠ADC=90°,∴∠AFD+∠DAF=90°.∵CA是⊙O的切线,∴∠ACB=90°,∴∠AEC+∠EAC=90°,又∵∠DAF=∠EAC,∴∠AFD

如图,CD是圆O的直径,以D为圆心,DO为半径作弧,交圆O于点A,B

连接OA,OB,AD,有AO=AD=OD,所以∠AOD=60° 同理,∠BOD=60°,所以∠AOB=120°.还可得出∠AOC=180°-60°=120°,所以∠AOB=∠AOC=∠BOC