如图,⊙O的半径为r,AB和CD为相互垂直的直径,以B为圆心,BC为半径作
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:09:47
连接AO,∵半径是5,CD=1,∴OD=5-1=4,根据勾股定理,AD=AO2−OD2=52−42=3,∴AB=3×2=6,因此弦AB的长是6.
连接OA、O'B、OO',做O'D⊥OA交OA于D则OA=3,O'B=1,OO'=4,OD=2∵O'D⊥OA,OD=OO'*1/2∴∠OO
∵C为弧AB的中点,∵AB⊥OC,∵AB=6cm,∴AD=12AB=3cm,设OA=r,则OD=r-CD=r-1,在Rt△AOD中,∵OA2=AD2+OD2,即r2=32+(r-1)2,解得r=5.
(1)当C点在A、O之间时,如图甲.由勾股定理OC=R2−(32R)2=12R,故AC=R-12R=12R;(2)当C点在B、O之间时,如图乙.由勾股定理知OC=R2−(32R)2=12R,故AC=R
连接OA,OB∵OA=OC,CA=CO∴AC=AO=OC∴△AOC是等边三角形∴∠AOC=60°同理可得∠BOC=60°∴∠AOB=120°∴弧AB的度数为120°希望得到您的采纳,
勾股定理得,r^2=1/4r^2+(1/2ab)^2所以 (1/2ab)^2=3/4r^2所以1/2ab=二分之根号3倍的r所以ab=根号3倍的
连接OA,OC,做OM⊥AB垂足为M,交CD于N,∵AB‖CD,∴ON⊥CD,∴AM=1/2AB=3,MN=1,在Rt⊿AOM中,OA=5,AM=3,∴有勾股定理得OM=4,∴ON=OM-MN=4-1
过O作AC的垂线,垂足为DOD//BC∠AOD=∠B=30°OD=sqrt(3)/2*msqrt(3)/2*m>1/2即m>sqrt(3)/3时相离sqrt(3)/2*m=1/2即m=sqrt(3)/
对圆内接正六边形,连接圆心和正六边形相邻的两个顶点,把正六边形分成六个全等三角形每边所对圆心角为360/6=60度,且由于圆心到两个顶点距离相等,都为半径R所以每个三角形都是等边三角形,因此正六边形边
先连接O’E、O’C再把O、O’连起来再延长于OB相交D那么D就是AB与小圆的相切点即O’D=r且
由OC=OB知,∠CBO=∠BCO而∠BCO+∠CBA=90°所以tan∠CBO=ctg∠CBA=3/1=3你已求出BC的值,应该也已知道BD=3,CD=1吧(点D为AB与OC的交点)
由弧长公式,得,弧AB:nπR/180=πR/3解得n=60即∠AOB=60°连OD,O'C,则OD经过O'点因为OC,OB为切线所以∠COD=∠AOB/2=30°在直角三角形OCO'中,OO'=2C
8/3设AD为x,则AO为根号x平方加OB,故AC:AD等于BC:OD,代入数据.
角aob+角a+角b=180°因为角aob等于2a角a=角b所以可以得出2a+a+a=180°角a=45°角aob=90°ab=r√2弦心距oc=r/√2
证明:连接OA、OB、OC.∵S△ABC=S△OAB+S△OBC+S△OCA又∵S△OAB=12AB•r,S△OBC=12BC•r,S△OCA=12CA•r∴S△ABC=12AB•r+12BC•r+1
∵AB是⊙O的弦,OC⊥AB于点C,AB=23,∴BC=12AB=3,在Rt△BOC中,∵BC=3,OC=1,∴OB=OC2+BC2=1+3=2.故选C.
延长AO交圆O于D,连接CD则AD为圆O的直径∴∠ACD=90∵BC//OA,即BC//AD∴弧AB=弧CD【平行两弦所夹的弧相等】∴AB=CD【等弧对等弦】根据勾股定理AC=√(AD²-C
连接OB,OC,OB与AC交于点D,OB=OA=AB,
A为圆上点,O为圆心,OA为半径R
(1)设AA1=h,∵底面半径R=1,圆柱的表面积为8π,∴2π×12+2πh=8π,解得h=3.∵点C在底面圆O上,且∠AOC=120°,AB是圆柱OO1底面圆O的直径,∴AB=2,BC=1,AC=