如图,△ABC的∠ABC的外角的角平分线BD与∠ACB的外角的平分线CE交于点P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:06:58
如图,△ABC的∠ABC的外角的角平分线BD与∠ACB的外角的平分线CE交于点P
如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC,内角∠ABC,外角∠ACF

1正确,因为∠ABC=∠ACB,∠EAC是三角形ABC的外角所以∠ACB=1/2∠EAC又因为AD平分∠EAC所以∠DAC=1/2∠EAC所以∠ACB=∠DAC所以AD平行BC2正确因为AD平行BC所

如图,三角形ABC的外角

过D分别作AE,AC,CF的垂线交E,Q,F.∵AD,CD是、∠EAC和∠FCA的平分线∴ED=DQ,DQ=DF,∴EQ=DF∴三角形BED≌三角形BDF(HL)∴BD平分∠ABC

如图,△ABC的∠ABC的外角平分线BD与∠ACB的外角的平分线CE相交于点p.求证:点p到三边

设点P到AB的垂足是F,到BC的垂足是G,到AC的垂足是H∴∠PBF=∠PBG,∠PFB=90°=∠PGB,BP=BP∠PCF=∠PCH,∠PGC=90°=∠PHC,CP=CP∴△PBF≌△PBG△P

已知:如图,∠CAE是△ABC的外角,AD平分外角∠EAC,AD平行BC,求证:△ABC等腰三角形

∵AD∥BC∴∠1等于∠ABC∠2=∠ACB∵AD平分∠EAC∴∠1=∠2∴∠ABC=∠ACB∴△ABC为等腰三角形

如图,BP是△ABC的外角平分线,点P在∠BAC的角平分线上.求证:CP是△ABC的外角平分线.

证明:过P作三边AB、AC、BC的垂线段PD、PE、PF,∵BP是△ABC的外角平分线,PD⊥AD,PF⊥BC,∴PD=PF(角平分线上的点到角两边的距离相等),∵点P在∠BAC的角平分线上,PD⊥A

如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.

④是错误的,∠BDC=1/2∠ABC,∠ADB=1/2∠ABC,∵∠BAC≠∠ABC,∴∠ADB≠∠BDC,∴BD不是∠ADC的平分线.③∠DAC+∠DCA=1/2(∠EAC+∠ACF)=1/2(∠A

如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:

∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠

如图 ce是三角形abc的外角

该题运用的思想是:三角形的两个内角之和,等于第三个角的外角证明:角BAC大于角B因为CE为角ACE的平分线所以角ACE等于等于角ECD由此可得:角B+角BAC=角ACD=角ACE+角ECD角BAC=角

已知,如图CE是三角形ABC的外角

证明:∵CE是∠ACD的平分线∴∠ACE=∠ECD∠ECD是△BCE的外角∴∠ECD=∠E+∠EBC∴∠ECD>∠EBC∴∠ACE>∠EBC即:∠EBC<∠ACE

如图∠DBC和∠ECB是△ABC的两个外角.

⑶证明:∵BP平分∠DBC,PM⊥AB,PQ⊥BC,∴PM=PQ,∵CP平分∠ECB,PN⊥AC,PQ⊥BC,∴PN=PQ,∴PM=PN,∴P在∠BAC的平分线上,即AP平分∠BAC.

如图,∠DBC和∠ECB是△ABC的两个外角.

(1)如下图.(作图正确)(2)如下图.(作图正确)(3)PM=PN=PQ.理由:由于BP是∠DBC的角平分线,且PM⊥BD、PQ⊥BC,根据角平分线的性质得:PM=PQ,同理,PQ=PN;故PM=P

如图,在△ABC中,AE是外角∠CAD的平分线,AE//BC,求证△ABC是等腰三角形.

因为AE平行DC所以∠B=∠DAE(两直线平行,同位角相等)∠C=∠EAC(两直线平行,内错角相等)又因为AE是∠DAC的角平分线所以∠DAE=∠EAC即∠B=∠C所以三角形ABC是等腰三角形(等角对

如图,已知△ABC中,∠CAB、∠ABC的外角平分线相交于点

解题思路:利用三角形内角和定理求解。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include

如图,∠ACD是△ABC的外角

∵∠ACD=∠A+∠ABC,CA1平分∠ACD∴∠A1CD=∠ACD/2=(∠A+∠ABC)/2∵BA1平分∠ABC∴∠A1BC=∠ABC/2∴∠A1CD=∠A1+∠A1BC=∠A1+∠ABC/2∴∠

如图,在△ABC中,BD、CD分别是∠ABC、∠ACB的平分线,BP、CP分分别是∠ABC、∠ACB的外角平分线

1、角D=110度,角P=70度角A=40度,角B+角C=180-40=140度,1/2∠B+1/2∠C=70°,在△BDC中,∠D=180-70=110°∠B的外角+∠C的外角=360°-140°=

如图,CD是△ABC的外角∠ACE的平分线,BD是∠ABC的平分线.

∵角平分线∴∠ABC=2∠DBC∠ACE=2∠DCE∠ACD=∠DCE∵∠A=∠ACE-∠ABC∴∠A=2∠DCE-2∠DBC∵∠D=∠DCE-∠DBC∴∠A=2∠D∵∠DCE﹥∠D∠DCE=∠ACD

如图,已知在△ABC中,∠CAB、∠ABC的外角平分线相交于点D.

角D=45度角D=30度角D=55度∠CAB+∠ABC=180度-∠C     ∠EAB=180度-∠CAB  ∠ABF=180度

已知,如图O是△ABC的内角∠ABC和外角∠ACE的平分线的交点

∵∠A+∠ABC+∠ACB=180∴∠ABC+∠ACB=180-∠A∵∠ACE=180-∠ACB,CO平分∠ACE∴∠OCE=∠ACE/2=(180-∠ACB)/2=90-∠ACB/2∵BO平分∠AB

如图,在△ABC中,E是内角∠ABC与外角∠ACD的角平分线的交点.

∠BEC=180°-∠EBC-∠ECB=180°-1/2∠B-(∠BCA+1/2∠ACD)=180°-1/2∠B-{(180°-∠A-∠B)+1/2(∠A+∠B)}=180°-1/2∠B-{180°-

已知,如图O是△ABC的内角∠ABC和外角∠ACE的平分线的交点.

∵∠A+∠ABC+∠ACB=180∴∠ABC+∠ACB=180-∠A∵∠ACE=180-∠ACB,CO平分∠ACE∴∠OCE=∠ACE/2=(180-∠ACB)/2=90-∠ACB/2∵BO平分∠AB