如图,圆o与直线mn相切与点a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:21:51
如图,圆o与直线mn相切与点a
如图,PQ垂直MN,交点为O,作出点A关于直线MN对称点B,点A关于直线PQ对称点C,试说明点B与点C关于点O成中心对称

将pq看成x轴mn看成y轴则ab关于y轴对称ac关于x轴对称则cb关于原点对称即o点B与点C关于点O成中心对称请问你的图在哪呢

点M(-3,0)N(3,0)B(1,0)圆O与MN相切于点B,过M,N与圆O相切的两直线相交于点P,则P点的轨迹方程为-

P点到M,N的距离差为(1+3)-(3-1)=2=2a,a=1,c=3,所以b=2*根号2,方程为x方/1-y方/8=1,(x>1)

如图,已知直线l与圆O相离,OA⊥l于点A,OA=5,OA与圆O相交于点P,AB与圆O相切于点B.BP的延长线交直线l于

解:设圆的关径为x,则AP=5-x.∵AB=AC.∴AB²=AC²,即OA²-OB²=PC²-AP²,5²-x²=(2√

直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动 1 如图

∠AEB的大小不变∵直线MN与直线PQ垂直相交于O∴∠AOB=90°∴∠OAB+∠OBA=90°∵AE、BE分别是∠BAO和∠ABO角的平分线∴∠BAE=1/2∠OAB,∠ABE=1/2∠ABO∴∠B

如图,在平面直角坐标系中,圆C与y轴相切,且C点坐标为(1,0),直线L过点A(-1,0),与圆C相切于点D,求直线L的

/>连接CD则CD=OC=1,CD⊥AD∵OA=1∴AC=2∴∠CAD=30°∴OB=√3/3设L的解析式为y=kx+b将点A和点B坐标代入可得L的解析式为y=(√3/3)x+√3/3

如图,在平面直角坐标系中圆C与y轴相切,且C点坐标为(1,0)直线l过点A(-1,0)与圆C相切于点D,求直线l的解析式

y=(根号3)/3x+(根号3)/3我们是告诉解析式证明相切.谁告诉我怎么证明额设直线L的方程为:y=kx+b因为过点A,则代入方程得-k+b=0b=k所以直线L方程化为y=kx+k1,圆OC与Y轴相

如图,已知AB是是圆O的直径,直线CD与圆O相切于点C,AC平分∠DAB.

(1)连接OC∵OC=OA∴∠CAO=∠OCA又∵CD与圆O相切∴∠OCD=90°即∠OCA+∠DCA=90°∴∠CAO+∠DCA=90°又∵AC平分∠DAB∴∠DAC=∠CAO∴∠DAC+∠DCA=

如图已知AB是圆O的直径,直线CD与圆O相切于点C,AC平分角DAB

1,连接AC,AD,AB,CO因为AB是直径,CO是半径,所以AO=BO=CO,故CO将角AOB平分,易得角AOC=角COB=90度,角CAO=45度,因为AC平分角DAB,所以角DAC=角CAO=4

如下图,已知直线MN垂直于直线PQ,垂足为O点,A1与A以MN为轴的对称点,A2与A是以PQ为轴的对称点.

∵对称∴∠1=∠2,∠3=∠4,A1O=A2O=A0∵∠1+∠3=90°∴A1、O、A2在一直线上∴A2与A1关于O点成中心对称

如图1,点O在角APB的平分线上,圆O与PA相切于点C.(1)求证:直线PB于圆O相切

(1)连结OC作OD⊥PBD为垂足∵圆O与PA相切于点C∴OC⊥PA又OD⊥PB点O在角APB的平分线上∴OD=OC即圆心O到直线BP的距离等于圆的半径∴直线PB于圆O相切2设PO交圆于F∵圆O与PA

如图,点O在∠APB的平分线上,⊙O与PA相切于点C. 求证:直线PB与⊙O相切;

连接OC,过O作ON⊥PB于N∵⊙O与PA相切于点C∴OC⊥PA又∵ON⊥PB且O在∠APB的平分线上∴OC=ON∴直线PB与⊙O相切

如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;

(1)证明;过点O作OD垂直PB于D所以角ODP=90度因为圆O与PA相切于C所以角OCP=90度所以角OCP=角ODP=90度因为点O在角APB的平分线上所以叫OPC=角OPD因为OP=OP所以三角

如图,点o在∠APB的平分线上,圆o与PA相切于点c.

由题意可得:OE=3,PC=4连接OC,过C作CH垂直于PO因为圆o与PA相切于点c,所以角OCP=90因为OE=OC=3,PC=4,角OCP=90所以PO=5有面积法可得CH=12/5在RT三角形O

如图1,大半圆o与小半圆o1是同心圆,直径cd与mn在同一直线上,大半圆的弦ab与小半圆相切于点f,

郭敦顒回答:(1)条件中没有大圆或小圆半径的数值,求不出半圆中阴影部分的面积,而且也未显示出半圆中阴影部分为何部.(2)不论是否给出了半径的数值和半圆中阴影部分在何处(但必须是弓形部位或两侧部位),若

如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙

A、平移MN使点B与N重合,∠1=60°,AB=2,解直角三角形得MN=433,正确;B、当MN与圆相切时,M,N在AB左侧以及M,N在A,B右侧时,AM=3或33,错误;C、若∠MON=90°,连接

如图,点O在角APB的平分线上,圆o与PA相切于点c. (1)求证:直线PB与圆O相切;

(1)证明:连接OC,作OD⊥PB于D点.∵⊙O与PA相切于点C,∴OC⊥PA.∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,∴OD=OC.∴直线PB与⊙O相切;设PO交⊙O于F,连接CF.∵O

如图1,大半圆o与小半圆o1是同心圆,直径cd与mn在同一直线上,大半圆的弦ab与小半圆相切于点f ,且ab平行于cd,

(1)连接OA、OB、OF,角AOF=90度根据勾股定理AF^2=OA^2-OF^2=大圆半径^2-小圆半径^2=(1/2AB)^2=(6/2)^2=9阴影部分的面积=1/2(大圆面积-小圆面积)=1

如图,点P的坐标为(-2,1),⊙P与y轴相切,与x轴交于A.、B两点,直线MN过点M(2,3),N(4,1).

向右平移4个单位长度,但是B还是找不到啊,囧再问:A、B两点是⊙P与x轴的两个交点,A是左边交点,B是右边交点。

如图1,AB为圆O的直径,AD与圆O相切于点A,DE与圆O相切于点E,点C位DE延长线上一点,CE=CB.证BC为切线

1.证明:连结OC因为CE=CB,半径OE=OB,OC是公共边所以△OEC≌△OBC(SSS)则∠OEC=∠OBC又DE与圆O相切于点E,即∠OEC=90°则∠OBC=90°所以BC是圆O的切线,且以

如图,PA切⊙O于A点,PO平行AC,BC是⊙O的直径.请问:直线PB是否与⊙O相切?并证明.

PB与圆O相切,理由如下:连结OA∵PA切圆O于A,∴∠OAP=90°∵AC∥OP,∴∠C=∠POB,∠CAO=∠AOP,∵OA=OC,∴∠C=∠CAO,∴∠AOP=∠BOP,又∵OP=OP,OA=O