如图,圆o中ab是直径,弦ge垂直ef,hf垂直ef
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:03:07
1、连接OG∵KE=GE∴∠EGK=∠EKG=∠AKH∵OA=OO,那么∠OAG=∠OGA=∠HAK∵AB⊥AD,那么∠AHK=90°∴∠AKH+∠HAK=90°即∠EGK+∠OGA=90°∴∠OGE
证明:(证法一)连接OE,DE,∵CD是⊙O的直径,∴∠AED=∠CED=90°,∵G是AD的中点,∴EG=12AD=DG,∴∠1=∠2;∵OE=OD,∴∠3=∠4,∴∠1+∠3=∠2+∠4,∴∠OE
过O作OE⊥CD,交CD于E∵直径AB=8∴OB=4∵P是OB中点∴OP=OB/2=4/2=2∵∠APC=30,OE⊥CD∴OE=OP×sin30=2×1/2=1∴CE²=OC²-
证明:作OH垂直EF于H,则EH=HF.∵GE⊥EF,OH⊥EF,HF⊥EF.∴GE∥OH∥HF.∴CO:OD=EH:HF=1:1(EH=HF)故CO=OD,OA-OC=OB-OD,即AC=BD.
不知道我的方法楼主觉得麻烦不?再问:赞再问:采了
连接GFHEGH因为∠GEF=∠HFEEF=EF∠FGF=∠EHF(都是弧EF对应的圆周角)所以△GEF全等于△HEF所以GE=HF因为GE//HF所以四边形GEFH是矩形所以GH=EF所以弧GE+弧
1因直径AB=AP+BP=2+6=8,所以半径OA=8/2=4,OP=OA-AP=4-2=2.又角MPB=45度,故作OH垂直MN,垂足为H,三角形OHP是等腰直角三角形.OH=HP,而OH^2+PH
1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√
解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r
(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠
(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.
因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=
.这个就要用到三角形全等来证明了.连接AB,EF同弧对的角(圆周角)相同,那么BAE=BFE同样AF弧的圆周角ABF=AEF而上小题已经得到AB=EF所以三角形ABG和FEG全等(角边角)这样就得到了
1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就
连接EO,DO=CO/2=EO/2,则角DOE=60度,角AOE=30度,因此CE弧=2EA弧
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD
OM平方+AM平方=OA平方AM平方=5*5-3*3=16AM=4AB=AM*2=4*2=8弦AB的长等于8.
①直径是圆中最长的弦.过点A作任一弦(不与AB重合)交圆O于点K,我们证明AK小于AB即可.连接BK,则△ABK是直角三角形,∠AKB=90°,AB是斜边,所以AB大于AK.因为对于任何不与AB重合的