如图,圆o的直径AB与弦CD交于点E,AE=5,BE=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:59:34
1、辅助线:连接EB、DB2、在三角形AMF与ABE中,由于AF/AB=AM/AE所以AF*AE=AB*AM3、在三角形AMD与ADB中,由于AD/AB=AM/AD所以AD*AD=AB*AM4、所以A
过O点做OE垂直CD于E所以OE垂直平分CD因为AP=5,BP=1所以AB=6=直径,即半径=3所以OP=OB-BP=3-1=2因为角APD=60度,三角型OPE是直角三角型所以EO=根号3在三角型O
连接OD在直角三角形OPD中,OD=1/2AB=5,OP=根号2,所以PD=根号(OD2-OP2)=根号23根据垂径定理,CD=2PD=2根号23有条件没有用到,你确定题没错吧.解法就这样.
24.证:连结AF则∠ABD=∠F∠ADG=∠ABD∴∠ADG=∠F,∵DF为⊙O的直径∴∠DAF=90°∴∠ADF+∠F=90°∴∠ADG+∠ADF=∠FDG=90°∴∠DAF=∠CDE=90°∵C
证:设M为CD中点连接OM,则OM垂直于CD(垂弦定理)又因为CE垂直于CD,DF垂直于CD所以CE平行于OM平行于DF(在同一平面内,垂直于同一直线的两条直线相互平行)又因为M为CD中点(已设)所以
因为AB为直径所以∠ACB=90又因为CD平分∠ACB所以∠ACD=45所以∠ABD=45(同弧对等角
设半径ROE=R-CE=R-8AE=1/2AB=12OA=ROA²=OE²+AE²R²=(R-8)²+144R=13cm再问:题目没说CD⊥AB或CD
(1)证明:连接OC、OD,∵∠ADC=45°,∴弧AC的度数是90°,∵AB为直径,∴弧BC的度数也是90°,∴弧AC=弧BC,∵OC为半径,∴OC⊥AB,∴∠COE=90°,∴∠C+∠OEC=90
相等呀~.链接0C和0D.因为0是圆心,CD分别是圆上两点.所以OC=OD,都是半径呀.三角形OCD是等腰梯形.做CD边的高,这个高肯定垂直于CD.所以和MD还有NC都平行.
孩子,是有多少作业?还不睡觉?再问:求解,用完相交弦定理然后怎么办呢再问:求解,用完相交弦定理然后怎么办呢再答:图在哪?再答:还在吗再答:取AB中点o,连接DO,OP,DP的值都能算出来,然后就能求角
连BF易证∠ABF=∠ADF(都是弧AF所对的圆周角)又DF是直径∠ADG=∠ABD∴∠FDG=∠ADF+∠ADG=∠ABF+∠ABD=∠FBD=90°∴DG是⊙O的切线即CD是⊙O的切线
∵AP=3,BP=7∴AP+BP=3+7=10∵AB是直径,O是圆心∴OA=OB=1/2AB=5∴OP=OA-AP=5-3=2做OE⊥CD,那么垂径定理:CE=DE连接OD=OA=5RT△OEP中:∠
(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.
提示,连接AC,过C作CG垂直AF,垂足为G令CF=a,CE=x,A0=rCG=FG=1/2根号2a,AG=3/2根号2aAC=根号5ar=根号5a/2用△AOE,△CGE相似AE/CE=AO/CGA
连接OC,OD三角形OPC中,PC=PO则∠C=∠POC又OC=OD所以∠C=∠PDOBD弧所对的圆心角BOC=∠PDO+∠OPD=∠PDO+∠C+∠POC=3∠CAC弧所对的圆心角为∠C所以弧AC=
这是一道关于圆的题目,下面开始证明证明:连结AE∴∠AEB=90º,∠PEB=∠EAB(弦切角定理)∵CD⊥AB,∴∠BFM=∠BAE=∠PEF∴PE=PF连接CE,ED∵∠PED=∠PCE
连接EO因为AB平行CE所以∠ECD=∠AOD因为弧EAD所对圆周角为∠ECD,所对圆心角为∠EOD所以∠ECD=1/2∠EOD所以∠EOA=∠AOD所以弧AD与弧AE相等
1,GO=OA∠OAG=∠OGA∠HKA=90-∠OAG ∠KGE=90-∠OGA∠HKA=∠KGE ∠GKE=∠HKA∠KGE=∠GKEKE=GE2,条件有问题,KE^2=KD*
证明:连接AC、AD、AG、DG,∵AB是圆O的直径,∴∠AGB=RT∠,AE⊥CD,BF⊥CD,E,F分别为垂足,∴四边形AEFG是矩形.∴AE=GF,EF//AG,∴∠ADE=∠DAG,∴②弧AC
关系为:BC²=BE*BF证明:连接CE∵AB是直径,AB⊥CD∴弧BD=弧BC∴∠BEC=∠BCF∵∠CBE=∠FBC∴△BCE∽△BFC∴BC/BF=BE/BC∴BC²=BE*