如图,在⊙O中,弧BC=2弧ED,角BOC=84度,求角A的度数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:48:33
延长CO,交圆O于F,连接BF、DF因为CF是直径所以∠CBF=90所以∠ABC+∠ABF=90因为AB垂直CD所以∠DCB+∠ABC=90所以∠ABF=∠DCB所以BD弧=AF弧所以AD弧=BF弧所
(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC
(1)连接OE,OD,在△ABC中,∠C=90°,AC+BC=8,∵AC=2,∴BC=6;∵以O为圆心的⊙O分别与AC,BC相切于点D,E,∴四边形OECD是正方形,tan∠B=tan∠AOD=ADO
(1)证明:连接AF,则AF⊥BC;∵AB=AC,且AF⊥BC,∴F是BC的中点,即CF=12BC=22AC;在Rt△ACF中,AC=2FC,则∠FCA=45°;即△ABC是等腰直角三角形,故AB⊥A
图呢?再问:图再答:楼上的解答中有个问题,∠B=∠C没有问题,但是∠B=∠C不等于(180°-∠BAC)。连接OD,弧AD度数为80,则∠AOD=80°;OA=OD,则∠OAD=∠ODA=50°.AB
设⊙O的半径为R,∵OD⊥BC,∴CE=BE=12BC=12×8=4,在Rt△BOE中,OE=OD-DE=R-2,OB=R,BE=4,∵OE2+BE2=OB2,∴(R-2)2+42=R2,解得R=5,
(1)以O为坐标原点建立平面直角坐标系,A(6-x',0),B(-x',3),C(-x’,0),E(-x’,y’)注:x’,y’为了与x,y区别直线AB的方程为:1/2x+y+x’/2-3=0O到直线
1)连CO,DO,EO,设圆O的半径为r,因为AC+BC=8,AC=2所以BC=6△ACO面积=(1/2)*AC*OD=r,△BCO面积=(1/2)*BC*OE=3r,△ABC面积=(1/2)*AC*
60° 【上边那图不对,不满足CD=1了.】因为CD=1,所以连接OD、OC,ODC为等边三角形,角7、8、9均为60°然后剩下的就是三角形内角和180°之间的换算了,不赘述.
如图:连接OA,OB,OC,OE并作OX⊥BE,OY⊥CE,OZ⊥AE并设∠OEB=β,半径OA=OB=OC=OE=R∵ΔABC为等边三角形∴∠AOB=∠BOC=120° ∠AO
∵CD=CE,∴∠CDA=∠CEA∵弧AC=弧BC,∴∠CDA=∠CDB,∴∠CEA=∠CDB∵ADBC四点共圆,∴∠CAE=∠CBD∵AC=BC,∴△ACE=△BCD,∴AE=BD,∠ACE=∠BC
(1)证明:∵四边形ABED为⊙O的内接四边形,∴∠CED=∠A(或∠CDE=∠B);又∠C=∠C,∴△CDE∽△CBA.(2)解法1:连接AE.由(1)得DEBA=CECA,∵AB为⊙O的直径,∴∠
(1)证明:∵四边形ABED为⊙O的内接四边形,∴∠CED=∠A(或∠CDE=∠B);又∠C=∠C,∴△CDE∽△CBA.(2)解法1:连接AE.由(1)得DEBA=CECA,∵AB为⊙O的直径,∴∠
如图所示过D作平行于AC的直线,交BA延长线于M,交BC延长线于N∵AD‖BN,AC‖MN,∴四边形ACND为平行四边形,∴CN=AD ∵BC=2AD ∴AD/BN =&
证明:(1)过点O作OM⊥AD,ON⊥BC,∵OE平分∠AEC,∴OM=ON,∴AD=BC,AD-BD=BC-BD,即AB=CD,∴AB=CD.(2)∵OM⊥AD,∴AM=DM,∵AD⊥CB,OE平分
连接AD∵D是弧BE的中点∴弧BD=弧DE∴∠BAD=∠CAD(等弧对等角)∵直径AB∴∠ADB=90∴AC=AB(三线合一)∴∠C=∠ABC=(180-∠BAC)/2=(180-40)/2=70数学
(1)证明:如图,连接AC,∵点A是弧BC的中点,∴∠ABC=∠ACB,又∵∠ACB=∠ADB,∴∠ABC=∠ADB.又∵∠BAE=∠BAE,∴△ABE∽△ABD;(2)∵AE=2,ED=4,∴AD=
OD⊥BC,OE⊥AC,得到BC=2DC,AC=2EC(垂直于弦的直径平分该弦)在直角△ODC和直角△OEC中斜边OC=OC(共用),直角边OE=OE,则直角△ODC≌直角△OEC对应边DC=EC∴B
(1)证明:连接OE.∵AB=AC且D是BC中点,∴AD⊥BC.∵AE平分∠BAD,∴∠BAE=∠DAE.∵OA=OE,∴∠OAE=∠OEA,则∠OEA=∠DAE,∴OE∥AD,∴OE⊥BC,∴BC是
(1)弧AB=弧CD,∴AB=AD,∠ADB=∠CBD又∠BAD=∠DCB,∴△ABD≌△CDB(2)连接AO,CO,∵∠BAE=∠DCE,∠AEB=∠CED且AB=CD,∴△ABE≌△CDE,∴AE