如图,在△abc中,ad平方bc于d

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:05:42
如图,在△abc中,ad平方bc于d
如图,在△ABC中,DE平行BC,EF平行DC,求证AD平方=AB×AF

这题是求证三角形的边比,不用相似定理就无法证.证明:∵DE//BC,则∠ADE=∠ABC、∠AED=∠ACB(平行线的同位角相等)∴△ADE∽△ABC(两角对应相等)∴AD/AB=AE/AC(相似三角

已知,如图,在△ABC中,CD⊥AB于D,CD的平方=AD乘BD.问△ABC是不是Rt△?请说明理由

是∵AD²﹢DC²=AC²BD²+DC²=BC²AC²+BC²=AD²+BD²+2DC²D

已知,如图,在△ABC中,AD⊥BC,垂足为点D,AD的平方=BD×DC.求证:三角形ABC是直角三角形

因为AD^2=BD*CD所以AD/BD=CD/AD所以△BDA∽△ADC所以∠BAD=∠ACD又因为∠ACD+∠DAC=90º所以∠BAD+∠DAC=90º所以角A为直角所以三角形

如图,在△ABC中,AD平分∠BAC,CD⊥AD于D,求证∠ACD>∠B

延长CD交AB于点E∵AD平分∠BAC∴∠BAD=∠CAD∵CD⊥AD∴∠ADE=ADC∵AD=AD∴⊿ADE≌⊿ADC﹙ASA﹚∴∠AED=∠ACD∵∠AED是△BCE的外角∴∠AED>∠B即∠AC

如图,在△ABC中,AD平分∠BAC,CE⊥AD于E.

证明:延长CE交AB于F,∵CE⊥AD,∴∠AEC=∠AEF,∵AD平分∠BAC,∴∠FAE=∠CAE,在△FAE和△CAE中∵∠FAE=∠CAEAE=AE∠AEF=∠AEC,∴△FAE≌△CAE(A

如图,已知在三角形ABC中,ab=AC,角b=角e,求证ab的平方=AD*ae

角B=角E,则A,B,E,C四点共圆,角ACB=角AEB=角ABC\x0d三角形ABD相似于AEB\x0dAB/AD=AE/ABAB方=AD*AE如果不知道四点共圆\x0d则角B=角E,角ADB=角C

如图,△ABC中,∠ABC=45°,AD⊥BC于B,点E在AD上,且DE=CD,求证:BE=AC

证明:因为AD⊥BC所以∠ADB=∠CDA=90°在RT△ABD中∠ABC=45°所以∠BAD=45°即RT△ABD为等腰直角三角形所以AD=BD又DE=CD∠ADB=∠CDA=90°所以RT△BED

如图,在△ABC中,AD平分

因为角EAD=角CAD,(AD平分角BAC)又:角EDA=角DAC,(DE//AC)所以,角EDA=角DAE又:EF垂直于AD所以,EF是AD的垂直平分线,∴FD=FA,(垂直平分线上的点到线段两个端

如图,在△ABC中,AD是BC边上的中线,求证:2AD

以AB,AC为边做平行四边形ABCE由于AD是BC边上的中线,所以延长AD一定交与点E在三角形ACE中,有AE

1.如图,在△ABC中,D、E分别是BC、AD中的点,S△ABC=4cm平方,求S△ABC.

第一个求的应该是S△ABE吧?1.解∵D是BC中点∴BD=DC∵S△ADC=½DC乘HS△ABD=½BD乘H∴S△ABD=S△ADC∵S△ABC=4cm²∴S△A

1.如图,在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm的平方,求S△ABE

1、因为D是三角形BC边的中点则S△ABD=S△ADC=S△ABC/2=2cm^2同理,S△ABE=S△ABD/2=1cm^22、延长BP交AC于D,在△ABD:AB+AD>BD=BP+PD即AB+A

如图,在△ABC中,∠ACB=90°,AC=BC,AD为△ABC的角平分线,BE⊥AD交AD延长线于E.求证:AD=2B

证明:注意自己画好图哦延长BC交AC延长线于点MAD是∠CAB的平分线AC=BC,∠ACB=90°那么∠CAD=∠BAE=22.5°∠ABC=45°BE⊥AE∠CBM=22.5°在RT△ACD和RT△

如图 在△ABC中,∠C=2∠B ,AD是△ABC的角平分线.

延长AC到E使得CE=CD,连接DE,用三角形全等

如图,在△ABC中,AD⊥BC,∠1=∠B,试说明△ABC为直角三角形

根据你的描述,我可以知道你的∠1指的是∠DAC,对么?如果是,则因为AD⊥BC所以∠ADC=90°,所以∠DAC+∠ACD=180°-∠ADC=90°,即∠1+∠ACD=90°,因为∠1=∠B,所以∠

已知 如图 在△ABC中,AD⊥BC,∠1=∠B,求证:△ABC为直角三角形

由AD⊥BC,∠B=∠1=∠CAD,(1)∴△ABD中,∠B+∠BAD=90°,(2)将(1)代入(2)得:∠1+∠BAD=∠BAC=90°,∴△ABC是直角三角形.

已知:如图,在Rt△ABC中,∠B=90°,AD平分∠BAC,AB沿AD折叠,点B落在AC上,已知

设AB沿AD折叠点B落在AC上,这一点设为E,设BD=X,则AD=8-X,很容易证明:DE=BD=X,AE=AB=6,则由直角三角形的定理可知:AC=10=AE+CE则CE=4那么CE^2=16=CD

如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B.

证明:∵∠1=∠B(已知),∴∠AED=2∠B(三角形外角的性质),DE=BE(等角对等边),又∠C=2∠B,∴∠C=∠AED(等量代换),在△ACD和△AED中,∠CAD=∠EAD∠C=∠AEDAD