如图,在△abc中,ad是高
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:56:42
一定要勾股定理么.这分明是射影定理的逆向证明.由CD是AB边上的高∴△CDA与△CDB是直角三角形∴CD²+AD²=AC²,CD²+BD²=BC
方法一:∠DAE=1/2*(∠C-∠B)90°=∠DAE+∠AED=∠DAE+∠EAC+∠C=∠DAE+1/2*∠BAC+∠C=∠DAE+1/2*(180°-∠A+∠C)+∠C整理得∠DAC=1/2(
直角三角形ADC与直角三角形BEC中有一公共角C,所以角CAE与角EBD相等;又因为AD=BD,所以直角三角形HBD与直角三角形CAD全等(根据角边角定理)所以HD=DC
(1)∵O是高AD和BE的交点,∴∠OEC=∠ODC=90°,∴∠C+∠DOE=180°;∵∠DOE+∠AOE=180°,∴∠AOE=∠C;(2)由(1)可知,如果一个角的两边分别垂直于另一个角的两边
四边形CDOE内角和为360°∠C+∠DOE+∠CDO+∠CEO=360°∠C+∠DOE+90°+90°=360°∠C+∠DOE=180°
AD:BE=2:3S△ABC=1/2*BC*AD=1/2*AC*BE所以BC*AD=AC*BE因为AC:BC=2:3且BC*AD=AC*BE所以有AD:BE=2:3
以AB,AC为边做平行四边形ABCE由于AD是BC边上的中线,所以延长AD一定交与点E在三角形ACE中,有AE
(1)证明:∵AD是BC上的高,∴AD⊥BC,∴∠ADB=90°,∠ADC=90°,在Rt△ABD和Rt△ADC中,∵tanB=ADBD,cos∠DAC=ADAC,又∵tanB=cos∠DAC,∴AD
因为AD是BC的高线所以∠ADB=∠ADC=90°又因为AD=AD∠BAD=∠CAD所以△ABD和△ACD为全等三角形(ASA)则BD=CD即AD平分BC
由勾股定理:AB的平方加AC的平方等于BC的平方BC=根好下2a角ABD=角BAD=45度AD=BD=BC/2=a/根号2以后还是少上点网,多看点书.马上要中招考试了,好好学
(1)连接DE,因为E是AB中点,AD垂直于BC,所以,DE=BE=AE=CD.因为在三角形EDC中,三线合一,所以DG是高,同时也是中线,所以,G是CE的中点.(2)由(1)可知BE=ED所以,角E
哥哥的答案绝对和你意!因为AD垂直于BC所以角ADC=角ADB=90度在Rt三角形ABD和Rt三角形ACD中{AB=AC(已知){AD=AD(公共边)所以Rt三角形ADB=Rt三角形ADC[HL]所以
(1)直角三角形,斜边中线等于斜边的一半,周长=DFA+AED=CA+AB=18(2)EF//BC,AD垂直于BC,所以EF垂直于AD
(1)在△ABC中,∵AD是BC边上的高,∴∠ADB=∠ADC=90°.在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1.在△ADB中,∵∠ADB=90°,sinB=1/3,
在Rt△ABD中,由勾股定理,得:BD=AB2−AD2=3∴CD=BC-BD=10;在Rt△ADC中,AC=CD2+AD2=229∴sinC=ADAC=4229=22929.
AD是高PB^2-PC^2=(BD^2+PD^2)-(CD^2+PD^2)=BD^2-CD^2(PB-PC)(PB+PC)=(BD-CD)(BD+CD)PB+PC>BD+CDPB-PC
证明:(1)∵在△ABC中,AB=AC,AD是高,∴BD=CD(等腰三角形底边上高与底边上的中线重合);(2)∵AD是高,∴∠EDB=∠EDC,在△BDE和△CDE中,ED=ED∠EDB=∠EDCBD
因为∠B=30°,∠C=50°所以∠BAC=180°-∠B-∠C=100°因为AD,AE分别是△ABC的高和角平分线所以∠DAC=180°-90°-∠C=40°∠EAC=∠BAC/2=100°/2=5